Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 5: 3005, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24398476

RESUMO

Organic semiconductors with higher carrier mobility and better transparency have been actively pursued for numerous applications, such as flat-panel display backplane and sensor arrays. The carrier mobility is an important figure of merit and is sensitively influenced by the crystallinity and the molecular arrangement in a crystal lattice. Here we describe the growth of a highly aligned meta-stable structure of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) from a blended solution of C8-BTBT and polystyrene by using a novel off-centre spin-coating method. Combined with a vertical phase separation of the blend, the highly aligned, meta-stable C8-BTBT films provide a significantly increased thin film transistor hole mobility up to 43 cm(2) Vs(-1) (25 cm(2) Vs(-1) on average), which is the highest value reported to date for all organic molecules. The resulting transistors show high transparency of >90% over the visible spectrum, indicating their potential for transparent, high-performance organic electronics.

2.
Adv Mater ; 25(40): 5762-6, 2013 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-23956037

RESUMO

Organic single-crystalline p-n junctions are grown from mixed solutions. First, C60 crystals (n-type) form and, subsequently, C8-BTBT crystals (p-type) nucleate heterogeneously on the C60 crystals. Both crystals continue to grow simultaneously into single-crystalline p-n junctions that exhibit ambipolar charge transport characteristics. This work provides a platform to study organic single-crystalline p-n junctions.

3.
J Am Chem Soc ; 135(30): 11006-14, 2013 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-23822850

RESUMO

Because of their preferential two-dimensional layer-by-layer growth in thin films, 5,5'bis(4-alkylphenyl)-2,2'-bithiophenes (P2TPs) are model compounds for studying the effects of systematic chemical structure variations on thin-film structure and morphology, which in turn, impact the charge transport in organic field-effect transistors. For the first time, we observed, by grazing incidence X-ray diffraction (GIXD), a strong change in molecular tilt angle in a monolayer of P2TP, depending on whether the alkyl chain on the P2TP molecules was of odd or even length. The monolayers were deposited on densely packed ultrasmooth self-assembled alkane silane modified SiO2 surfaces. Our work shows that a subtle change in molecular structure can have a significant impact on the molecular packing structure in thin film, which in turn, will have a strong impact on charge transport of organic semiconductors. This was verified by quantum-chemical calculations that predict a corresponding odd-even effect in the strength of the intermolecular electronic coupling.

4.
Nat Commun ; 2: 437, 2011 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-21847111

RESUMO

For organic semiconductors to find ubiquitous electronics applications, the development of new materials with high mobility and air stability is critical. Despite the versatility of carbon, exploratory chemical synthesis in the vast chemical space can be hindered by synthetic and characterization difficulties. Here we show that in silico screening of novel derivatives of the dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene semiconductor with high hole mobility and air stability can lead to the discovery of a new high-performance semiconductor. On the basis of estimates from the Marcus theory of charge transfer rates, we identified a novel compound expected to demonstrate a theoretic twofold improvement in mobility over the parent molecule. Synthetic and electrical characterization of the compound is reported with single-crystal field-effect transistors, showing a remarkable saturation and linear mobility of 12.3 and 16 cm(2) V(-1) s(-1), respectively. This is one of the very few organic semiconductors with mobility greater than 10 cm(2) V(-1) s(-1) reported to date.

5.
Phys Chem Chem Phys ; 13(19): 8931-9, 2011 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-21455539

RESUMO

Developing new acceptor materials as alternatives to fullerene acceptors remains a challenge in the field of organic photovoltaics. We report on the synthesis and optoelectronic properties of three acceptor polymers bearing diketopyrrolopyrrole units in the main chain (PA, PB and PC). Their performance as the acceptor material in bulk heterojunction solar cells using P3HT as the donor material has been tested. The solar cells show relatively high open-circuit voltages (≥0.9 V) but low fill factors and short-circuit current densities limit the photovoltaic device performance. Formation of free charge carriers and low electron mobility are identified as the major obstacles. In blends of P3HT with PA or PB charge formation is limited, while for the P3HT:PC blend photogenerated charges recombine into the PC triplet state before they can separate, unless assisted by a reverse electric field.


Assuntos
Fontes de Energia Elétrica , Fulerenos/química , Polímeros/química , Pirróis/química , Fotoquímica
6.
J Am Chem Soc ; 131(46): 16616-7, 2009 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-19886605

RESUMO

A new semiconducting polymer, PDPP3T, with alternating diketopyrrolopyrrole and terthiophene units is presented. PDPP3T has a small band gap of 1.3 eV and exhibits nearly balanced hole and electron mobilities of 0.04 and 0.01 cm(2) V(-1) s(-1), respectively, in field-effect transistors (FETs). By the combination of two identical ambipolar transistors, an inverter was constructed that exhibits a gain of approximately 30. When PDPP3T was combined with [60]PCBM or [70]PCBM in a 1:2 weight ratio, photovoltaic cells were made that provide a photoresponse up to 900 nm and an AM1.5 power conversion efficiency of 3.8 or 4.7%, respectively. In contrast to the almost constant FET mobility, the efficiency of the photovoltaic cells was found to be strongly dependent on the molecular weight of PDPP3T and the use of diiodooctane as a processing agent.

7.
Org Lett ; 11(4): 903-6, 2009 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-19170621

RESUMO

A conjugated polymer (PBTTQ) that consists of alternating electron-rich bithiophene and electron-deficient thiadiazoloquinoxaline units was synthesized via Yamamoto polymerization with Ni(cod)(2) and provides a band gap of 0.94 eV. This represents one of the smallest band gaps obtained for a soluble conjugated polymer. When applied in a bulk heterojunction solar cell together with [84]PCBM as the electron acceptor, the polymer affords a response up to 1.3 microm.

8.
Chemistry ; 12(31): 8075-83, 2006 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-16900542

RESUMO

The properties of a mixed CdTe quantum dot/tetrahydro-4H-thiopyran-4-ylidene-functionalized polythiophene system are reported. This system was prepared by exposing trioctylphosphine (TOP)-capped CdTe quantum dots to the polythiophene in solution. Strong fluorescence emission quenching and shortening of the fluorescence emission lifetimes of both the polythiophene and the quantum dots occur when they are mixed, indicating the occurrence of photoinduced charge separation. Photoinduced absorption spectroscopy reveals a considerable decrease in the population of the polythiophene triplet excited state in the mixed system. These results demonstrate that between the quantum dots and the polythiophene there is both physical and electronic contact, which is mediated by the tetrahydro-4H-thiopyran-4-ylidene side chains.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA