Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-37604587

RESUMO

Transmembrane signaling is essential for complex life forms. Communication across a bilayer lipid barrier is elaborately organized to convey precision and to fine-tune strength. Looking back, the steps that it has taken to enable this seemingly mundane errand are breathtaking, and with our survivorship bias, Darwinian. While this review is to discuss eukaryotic membranes in biological functions for coherence and theoretical footing, we are obliged to follow the evolution of the biological membrane through time. Such a visit is necessary for our hypothesis that constraints posited on cellular functions are mainly via the biomembrane, and relaxation thereof in favor of a coordinating membrane environment is the molecular basis for the development of highly specialized cellular activities, among them transmembrane signaling. We discuss the obligatory paths that have led to eukaryotic membrane formation, its intrinsic ability to signal, and how it set up the platform for later integration of protein-based receptor activation.


Assuntos
Eucariotos , Transdução de Sinais , Membrana Celular , Lipídeos , Colesterol
2.
BMC Med Genomics ; 16(1): 122, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37277784

RESUMO

BACKGROUND: Some bladder-related diseases, such as bladder urinary tract infection (UTI) and bladder cancer (BCa), have significant six differences in incidence and prognosis. However, the molecular mechanisms underlying these sex differences are still not fully understood. Understanding the sex-biased differences in gene expression in normal bladder cells can help resolve these problems. METHODS: We first collected published single-cell RNA sequencing (scRNA-seq) data of normal human bladders from females and males to map the bladder transcriptomic landscape. Then, Gene Ontology (GO) analysis and gene set enrichment analysis (GSEA) were used to determine the significant pathways that changed in the specific cell populations. The Monocle2 package was performed to reconstruct the differentiation trajectories of fibroblasts. In addition, the scMetabolism package was used to analyze the metabolic activity at the single-cell level, and the SCENIC package was used to analyze the regulatory network. RESULTS: In total, 27,437 cells passed stringent quality control, and eight main cell types in human bladder were identified according to classical markers. Sex-based differential gene expression profiles were mainly observed in human bladder urothelial cells, fibroblasts, B cells, and T cells. We found that urothelial cells in males demonstrated a higher growth rate. Moreover, female fibroblasts produced more extracellular matrix, including seven collagen genes that may mediate BCa progression. Furthermore, the results showed that B cells in female bladders exhibited more B-cell activated signals and a higher expression of immunoglobulin genes. We also found that T cells in female bladders exhibited more T-cell activated signals. These different biological functions and properties of these cell populations may correlate with sex differences in UTI and BCa, and result in different disease processes and outcomes. CONCLUSIONS: Our study provides reasonable insights for further studies of sex-based physiological and pathological disparities in the human bladder, which will contribute to the understanding of epidemiological differences in UTI and BCa.


Assuntos
Neoplasias da Bexiga Urinária , Bexiga Urinária , Infecções Urinárias , Humanos , Estudos Prospectivos , Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/genética , Infecções Urinárias/genética , Análise de Célula Única , Regulação da Expressão Gênica , Análise de Sequência de RNA
3.
J Genet Genomics ; 49(11): 1002-1015, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35395421

RESUMO

Extensive studies have been performed to describe the phenotypic changes occurring during malignant transformation of the prostate. However, the cell types and associated changes that contribute to the development of prostate diseases and cancer remain elusive, largely due to the heterogeneous composition of prostatic tissues. Here, we conduct a comprehensive evaluation of four human prostate tissues by single-cell RNA sequencing (scRNA-seq) to analyze their cellular compositions. We identify 18 clusters of cell types, each with distinct gene expression profiles and unique features; of these, one cluster of epithelial cells (Ep) is found to be associated with immune function. In addition, we characterize a special cluster of fibroblasts and aberrant signaling changes associated with prostate cancer (PCa). Moreover, we provide insights into the epithelial changes that occur during the cellular senescence and aging. These results expand our understanding of the unique functional associations between the diverse prostatic cell types and the contributions of specific cell clusters to the malignant transformation of prostate tissues and PCa development.


Assuntos
Próstata , Neoplasias da Próstata , Masculino , Humanos , Próstata/metabolismo , Próstata/patologia , Transcriptoma/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Senescência Celular/genética , Fibroblastos/metabolismo , Transformação Celular Neoplásica
4.
Environ Sci Technol ; 56(1): 119-130, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34882389

RESUMO

N-containing organic compounds (NOCs) in humic-like substances (HULIS) emitted from biomass burning (BB) and coal combustion (CC) were characterized by ultrahigh-resolution mass spectrometry in the positive electrospray ionization mode. Our results indicate that NOCs include CHON+ and CHN+ groups, which are detected as a substantial fraction in both BB- and CC-derived HULIS, and suggest that not only BB but also CC is the potential important source of NOCs in the atmosphere. The CHON+ compounds mainly consist of reduced nitrogen compounds with other oxygenated functional groups, and straw- and coal-smoke HULIS exhibit a lower degree of oxidation than pine-smoke HULIS. In addition, the NOCs with higher N atoms (N2 and/or N3) generally bear higher modified aromaticity index (AImod) values and are mainly contained in BB HULIS, especially in straw-smoke HULIS, whereas the NOCs with a lower N atom (N1) always have relatively lower AImod values and are the dominant NOCs in CC HULIS. These findings imply that the primary emission from CC may be a significant source of N1 compounds, whereas high N number (e.g., N2-3) compounds could be associated with burning of biomass materials. Further study is warranted to distinguish the NOCs from more sources.


Assuntos
Poluentes Atmosféricos , Carvão Mineral , Aerossóis/análise , Poluentes Atmosféricos/análise , Biomassa , Monitoramento Ambiental , Substâncias Húmicas/análise , Nitrogênio/análise , Compostos de Nitrogênio/análise , Material Particulado/análise
5.
Cancer Cell Int ; 21(1): 467, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34488772

RESUMO

BACKGROUND: Prostate cancer (PCa) is still a serious male malignant disease across the world. However, no exact pathogenesis had been explained. Although adenylosuccinate lyase (ADSL) gene was identified to be important in PCa early in 1987, its comprehensive functions for PCa have not been presented. METHODS: The cBioPortal for Cancer Genomics, Oncomine and GEO database were retrieved to investigate the associations between of the ADSL gene and PCa. Then, the PC-3, DU145 and C4-2B cell lines were applied in vitro experiments. RNA sequencing and further western blot (WB) were applied to explore the potential mechanisms of ADSL gene in PCa. RESULTS: Based on PCa clinical datasets, we firstly found ADSL gene highly expressed in PCa tissues. Moreover, its transcript level increased in the metastatic PCa further. Elevated ADSL gene expression indicated a poor prognosis of PCa. While inhibiting the expression of ADSL with siRNA, the ability of cell proliferation and migration all declined markedly, with increased cell apoptosis inversely. Most of cells were blocked in the G0/G1 phase. Additionally, RNA sequencing also discovered the inactivity of cell cycle pathway after ADSL knockdown, which had also confirmed on the proteins levels. CONCLUSIONS: Our study identified the ADSL as an oncogene of PCa through regulating the cell cycle pathway firstly, with explicit cell and clinical phenotypes. Further mechanisms were needed to confirm its carcinogenic effect.

6.
J Cell Physiol ; 236(11): 7308-7321, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33934358

RESUMO

Various cells within the adrenal microenvironment are important in maintaining the body homeostasis. However, our understanding of adrenal disease pathogenesis is limited by an incomplete molecular characterization of the cell types responsible for the organ's multiple homeostatic functions. We report a cellular landscape of the human adrenal gland using single-cell RNA sequencing. We reveal characteristic features of cell types within the human adrenal microenvironment and found immune activation of nonimmune cells in the adrenal endothelial cells. We also reveal that abundant immune cells occupied a lot of space in adrenal gland. Additionally, Sex-related diversity in the adrenocortical cells and different gene expression profiles between the left and right adrenal gland are also observed at single-cell resolution. Together, at single-cell resolution, the transcriptomic map presents a comprehensive view of the human adrenal gland, which serves as a fundamental baseline description of this organ and paves a way for the further studies of adrenal diseases.


Assuntos
Glândulas Suprarrenais/metabolismo , Microambiente Celular , Análise de Célula Única , Transcriptoma , Glândulas Suprarrenais/citologia , Glândulas Suprarrenais/imunologia , Idoso , Ritmo Circadiano , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , RNA-Seq , Fatores Sexuais
7.
Front Pharmacol ; 12: 617555, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33613291

RESUMO

Background: 2-Dodecyl-6-Methoxycyclohexa-2, 5-Diene-1,4-Dione (DMDD) was purified from the roots of Averrhoa carambola L. Previous research demonstrated that DMDD is a small molecular compound with significant therapeutic potential for tumors. However, the potential targets and pharmacological mechanism of DMDD to treat lung cancer has not been reported. Methods: We employed network pharmacology and experimental evaluation to reveal the pharmacological mechanism of DMDD against lung cancer. Potential therapeutic targets of DMDD were screened by PharmMapper. Differentially expressed genes (DEGs) in The Cancer Genome Atlas (TCGA) lung cancer data sets were extracted and analyzed by GEPIA2. The mechanism of DMDD against lung cancer was determined by PPI, gene ontology (GO) and KEGG pathway enrichment analysis. Survival analysis and molecular docking were employed to obtain the key targets of DMDD. Human lung cancer cell lines H1975 and PC9 were used to detect effects of DMDD treatment in vitro. The expression of key targets after DMDD treated was validated by Western Blot. Results: A total of 60 Homo sapiens potential therapeutic targets of DMDD and 3,545 DEGs in TCGA lung cancer datasets were identified. Gene ontology and pathway analysis revealed characteristic of the potential targets of DMDD and DEGs in lung cancer respectively. Cell cycle and pathways in cancer were overlapping with DMDD potential targets and lung cancer DEGs. Eight overlapping genes were found between DMDD potential therapeutic targets and lung cancer related DEGs. Survival analysis showed that high expression of DMDD potential targets CCNE1 and E2F1 was significantly related to poor patient survival in lung cancer. Molecular docking found that DMDD exhibited significant binding affinities within the active site of CCNE1 and E2F1. Further tests showed that DMDD inhibited the proliferation, migration and clone formation in lung cancer cell lines (H1975 and PC9) in a dose and time dependent manner. Mechanistically, DMDD treatment decreased the expression of CDK2, CCNE1, E2F1 proteins and induced cell cycle arrest at the G1/S phase in H1975 and PC9 cells. Conclusion: These results delineated that DMDD holds therapeutic potential that blocks tumorigenesis by cell cycle regulation in lung cancer, and may provide potential therapies for lung cancer.

8.
Front Physiol ; 12: 758458, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35295163

RESUMO

A mammalian plasma membrane is a structure on which several layers of complexity are built. The first order of complexity comes from the heterogeneity of lipid-ordered domains. Gangliosides in concert with cholesterol are preferentially packed on the outer leaflet and form lipid-ordered domains, commonly known as lipid rafts. The formation and dynamics of these domains impact nearly all membrane protein functions and are an intensely studied topic. However, tools suited for lipid domain alteration are extremely limited. Currently, methyl-ß-cyclodextrin (MßCD) appears to be the most common way to disrupt lipid domains, which is believed to operate via cholesterol extraction. This significantly limits our ability in membrane biophysics research. Previously, we found that N-(3-oxo-dodecanoyl) homoserine lactone (3oc), a small signaling chemical produced by Pseudomonas aeruginosa, is highly efficient in altering lipid-ordered domains. In this study, 3oc was compared with MßCD in a series of biochemical, biophysical, and cell biological analyses. Per molarity, 3oc is more efficient than MßCD in domain alteration and appears to better retain membrane lipids after treatment. This finding will provide an essential reagent in membrane biophysics research.

9.
Front Pharmacol ; 12: 708141, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34975464

RESUMO

Diabetes mellitus (DM) is an independent risk factor for cognitive impairment. Although the etiology of diabetic cognitive impairment is complex and multifactorial, the hippocampus neuronal apoptosis is recognized as a main cause of diabetes-induced cognitive impairment. 2-Dodecyl-6-methoxycyclohexa-2,5-diene-1,4-dione (DMDD) was purified from the roots of Averrhoa carambola L. Previous research demonstrated that DMDD was safe and effective in delaying some diabetic complications. However, the efficacy of DMDD to ameliorate diabetic cognitive impairment in type 2 diabetes mice has not been reported. In the present study, the behavioral evaluation was performed by Y maze and novel object recognition in db/db mice. Gene expression profiles were detected using mouse lncRNA microarray analysis in the hippocampi of db/db mice. Changes in the neurodegeneration-associated proteins and the apoptosis-related proteins were determined in both db/db mice and high glucose-treated HT22 cells by Western blotting. We observed that DMDD treatment significantly ameliorated the spatial working memory and object recognition memory impairment in db/db mice. Further study showed that neurodegeneration-associated protein tau was decreased after DMDD treatment in the hippocampi of db/db mice. Eleven lncRNAs and four mRNAs including pro-apoptotic gene Hif3a were significantly differently expressed after DMDD treatment in the hippocampi of db/db mice. The expression of Hif3a, cleaved parp, and caspase 3 proteins was significantly increased in the hippocampi of diabetic db/db mice compared with db/m control mice and then decreased after DMDD treatment. Similar beneficial effects of DMDD were observed in HG-treated HT22 cells. These data indicate that DMDD can alleviate cognitive impairment by inhibiting neuronal apoptosis through decreasing the expression of pro-apoptotic protein Hif3a. In conclusion, our study suggests that DMDD has great potential to be a new preventive and therapeutic compound for diabetic cognitive impairment.

10.
Environ Pollut ; 267: 115492, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33254672

RESUMO

Dichlorodiphenyltrichloroethane (DDT) is well known for its harmful effects and has been banned around the world. However, DDT is still frequently detected in natural environments, particularly in aquaculture and harbor sediments. In this study, 15 surface sediment samples were collected from a typical tropical bay (Zhanjiang Bay) in the South China Sea, and the levels of DDT and its metabolites in sediment and porewater samples were investigated. The results showed that concentrations of DDXs (i.e., DDT and its metabolites) in bulk sediments were 1.58-51.0 ng g-1 (mean, 11.5 ng g-1). DDTs (DDT and its primary metabolites, dichlorodiphenyldichloroethane (DDD) and dichlorodiphenyldichloroethylene (DDE)) were the most prominent, accounting for 73.2%-98.3% (86.1% ± 12.8%) of the DDXs. Additionally, high-order metabolites (i.e., 1-chloro-2,2-bis(4'-chlorophenyl)ethylene (p,p'-DDMU), 2,2-bis(p-chlorophenyl)ethylene (p,p'-DDNU), 2,2-bis(p-chlorophenyl)ethanol (p,p'-DDOH), 2,2-bis(p-chlorophenyl)methane (p,p'-DDM), and 4,4'-dichlorobenzophenone (p,p'-DBP)) were also detected in most of the sediment and porewater samples, with DDMU and DBP being predominant. The DDTs concentration differed among the sampling sites, with relatively high DDTs concentrations in the samples from the aquaculture zone and an area near the shipping channel and the Haibin shipyard. The DDD/DDE ratios indicated a reductive dichlorination of DDT to DDD under anaerobic conditions at most of the sampling sites of Zhanjiang Bay. The possible DDT degradation pathway in the surface sediments of Zhanjiang Bay was p,p'-DDT/p,p'-DDD(p,p'-DDE)/p,p'-DDMU/p,p'-DDNU/ … /p,p'-DBP. The DDXs in the sediments of Zhanjiang Bay were mainly introduced via mixed sources of industrial DDT and dicofol, including fresh input and historical residue. The concentrations of DDXs in porewater samples varied from 66.3 to 250 ng L-1, exhibiting a distribution similar to that in the accompanying sediments. However, the content of high-order metabolites was relatively lower in porewater than in sediment, indicating that high-order degradation mainly occurs in particles. Overall, this study helps in understanding the distribution, source, and degradation of DDT in a typical tropical bay.


Assuntos
DDT , Poluentes Químicos da Água , Baías , China , DDT/análise , Monitoramento Ambiental , Sedimentos Geológicos , Poluentes Químicos da Água/análise
11.
Stem Cell Res Ther ; 11(1): 275, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32641151

RESUMO

Type 1 diabetes mellitus (T1DM) is the most common chronic autoimmune disease in young patients and is characterized by the loss of pancreatic ß cells; as a result, the body becomes insulin deficient and hyperglycemic. Administration or injection of exogenous insulin cannot mimic the endogenous insulin secreted by a healthy pancreas. Pancreas and islet transplantation have emerged as promising treatments for reconstructing the normal regulation of blood glucose in T1DM patients. However, a critical shortage of pancreases and islets derived from human organ donors, complications associated with transplantations, high cost, and limited procedural availability remain bottlenecks in the widespread application of these strategies. Attempts have been directed to accommodate the increasing population of patients with T1DM. Stem cell therapy holds great potential for curing patients with T1DM. With the advent of research on stem cell therapy for various diseases, breakthroughs in stem cell-based therapy for T1DM have been reported. However, many unsolved issues need to be addressed before stem cell therapy will be clinically feasible for diabetic patients. In this review, we discuss the current research advances in strategies to obtain insulin-producing cells (IPCs) from different precursor cells and in stem cell-based therapies for diabetes.


Assuntos
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Transplante das Ilhotas Pancreáticas , Diferenciação Celular , Diabetes Mellitus Tipo 1/terapia , Humanos , Insulina , Transplante de Células-Tronco
12.
Prostate ; 80(4): 352-364, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31905248

RESUMO

BACKGROUND: Signal regulatory protein ß1 (SIRPB1) is a signal regulatory protein member of the immunoglobulin superfamily and is capable of modulating receptor tyrosine kinase-coupled signaling. Copy number variations at the SIRPB1 locus were previously reported to associate with prostate cancer aggressiveness in patients, however, the role of SIRPB1 in prostate carcinogenesis is unknown. METHODS: Fluorescence in situ hybridization and laser-capture microdissection coupled with quantitative polymerase chain reaction was utilized to determine SIRPB1 gene amplification and messenger RNA expression in prostate cancer specimens. The effect of knockdown of SIRPB1 by RNA interference in PC3 prostate cancer cells on cell growth in colony formation assays and cell mobility in wound-healing, transwell assays, and cell cycle analysis was determined. Overexpression of SIPRB1 in C4-2 prostate cancer cells on cell migration, invasion, colony formation and cell cycle progression and tumor take rate in xenografts was also determined. Western blot assay of potential downstream SIRPB1 pathways was also performed. RESULTS: SIRPB1 gene amplification was detected in up to 37.5% of prostate cancer specimens based on in silico analysis of several publicly available datasets. SIRPB1 gene amplification and overexpression were detected in prostate cancer specimens. The knockdown of SIRPB1 significantly suppressed cell growth in colony formation assays and cell mobility. SIRPB1 knockdown also induced cell cycle arrest during the G0 /G1 phase and enhancement of apoptosis. Conversely, overexpression of SIPRB1 in C4-2 prostate cancer cells significantly enhanced cell migration, invasion, colony formation, and cell cycle progression and increased C4-2 xenograft tumor take rate in nude mice. Finally, this study presented evidence for SIRPB1 regulation of Akt phosphorylation and showed that Akt inhibition could abolish SIRPB1 stimulation of prostate cancer cell proliferation. CONCLUSIONS: These results suggest that SIRPB1 is a potential oncogene capable of activating Akt signaling to stimulate prostate cancer proliferation and could be a biomarker for patients at risk of developing aggressive prostate cancer.


Assuntos
Moléculas de Adesão de Célula Nervosa/genética , Moléculas de Adesão de Célula Nervosa/metabolismo , Neoplasias da Próstata/enzimologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Ativação Enzimática , Amplificação de Genes , Xenoenxertos , Humanos , Masculino , Camundongos , Camundongos Nus , Moléculas de Adesão de Célula Nervosa/biossíntese , Células PC-3 , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais
13.
Sci Data ; 7(1): 4, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31896769

RESUMO

A comprehensive cellular anatomy of normal human kidney is crucial to address the cellular origins of renal disease and renal cancer. Some kidney diseases may be cell type-specific, especially renal tubular cells. To investigate the classification and transcriptomic information of the human kidney, we rapidly obtained a single-cell suspension of the kidney and conducted single-cell RNA sequencing (scRNA-seq). Here, we present the scRNA-seq data of 23,366 high-quality cells from the kidneys of three human donors. In this dataset, we show 10 clusters of normal human renal cells. Due to the high quality of single-cell transcriptomic information, proximal tubule (PT) cells were classified into three subtypes and collecting ducts cells into two subtypes. Collectively, our data provide a reliable reference for studies on renal cell biology and kidney disease.


Assuntos
Rim/citologia , RNA-Seq , Análise de Célula Única , Humanos , Túbulos Renais Coletores/citologia , Túbulos Renais Proximais/citologia , Transcriptoma
14.
Biomed Pharmacother ; 121: 109516, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31704616

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The root of Averrhoa carambola L. (Oxalidaceae), a traditional Chinese medicine, was mainly used in ancient times in the treatment of urinary calculi, recurrent headache and joint pain. AIM OF THE STUDY: Our aims were to explore the potential therapeutic effect of the extract of Averrhoa carambola L. (Oxalidaceae) roots (EACR) against hepatic fibrosis in CCl4-treated rats and to understand the underlying molecular mechanism. MATERIALS AND METHODS: Six groups of male Sprague Dawley rats were treated as follows: vehicle (olive oil), CCl4 alone, CCl4+colchicine, CCl4+EACR 1.0 g/kg, CCl4+EACR 0.5 g/kg and CCl4+EACR 0.25 g/kg. At the end of the 12th week, biomarkers of liver function, liver fibrosis, hepatic oxidative stress and antioxidant status were assayed, and histopathological and immunohistochemical evaluation of liver tissue were conducted to investigate the liver damage and fibrosis degree. Furthermore, expressions of COL-1a1, α-SMA, TGF-ß1, Smad2, smad3, Smad4 and TIMP2 were examined by qPCR and/or western blot. The expressions of apoptosis-related proteins were also detected using western blot analysis. RESULTS: EACR treatment markedly reduced the CCl4-induced elevation of serum aminotransferase activities, liver fibrosis indexes, and the extent of oxidative stress. EACR treatment also significantly reduced the accumulation of collagen and the immunostaining of α-SMA, TGF-ß1 and Smad2, 4 and 7 in the liver of CCl4 treated rats. In addition, EACR treatment markedly reversed the CCl4-induced increase in mRNA expression of COL-1a1, α-SMA, TIMP2, TGF-ß1, Smad2 and Smad4 and suppressed the expressions of α-SMA, TIMP2, TGF-ß1, smad2, 3 and 4, BAX and cleaved caspase-3 proteins. Meanwhile, EACR treatment also significantly elevated the mRNA expression of Smad7 and the protein expression of Smad7 and Bcl-2. CONCLUSION: These results suggest that EACR has protective activity against liver fibrosis. The anti-fibrotic activity of EACR in vivo is associated with enhanced antioxidant, apoptosis-inhibition and increased MMP-2/TIMP-2 expression ratio, and with modulation of TGF-ß1/Smad signaling pathway.


Assuntos
Cirrose Hepática/tratamento farmacológico , Oxalidaceae/química , Extratos Vegetais/farmacologia , Raízes de Plantas/química , Animais , Tetracloreto de Carbono/farmacologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/metabolismo , Masculino , Medicina Tradicional Chinesa/métodos , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
15.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-831393

RESUMO

@#[摘 要] 目的:基于已发表的芯片数据通过生物信息学方法筛选差异表达基因,以发现前列腺癌诊断/预后和耐药相关分子标志物。方法:筛选GEO数据库中已发表的前列腺癌mRNA芯片数据GSE6956和前列腺癌细胞多烯紫杉醇耐药mRNA芯片数据GSE33455进行差异表达分析;通过生物学功能注释、基因通路富集分析、蛋白质相互作用网络(protein-protein interaction,PPI)分析等生物信息学方法发现和识别与差异表达基因相关的生物学功能和信号通路;比对TCGA数据库,验证差异表达基因在前列腺癌组织及癌旁组织中的表达,并通过Kaplan-Meier分析差异表达基因对前列腺癌患者生存率的影响;用qPCR方法验证差异表达基因在前列腺癌细胞株PC3及多烯紫杉醇耐药细胞PC3-DTX中的表达情况。结果:共筛选出227个在前列腺癌和前列腺癌多烯紫杉醇耐药细胞芯片数据中共同差异表达基因。差异表达基因主要富集到了癌症相关通路(Lysosome、Sphingolipid、FoxO、Acute myeloid leukemia),并主要参与细胞黏附、自噬和胞内蛋白转运等生物学过程。构建PPI网络选取18个连接度最高的基因作为Hub基因。Hub基因和共同差异表达基因中,上调基因CITED2、LRP12和RPL17-C18orf32与前列腺癌患者的不良预后显著相关。qPCR验证显示CITED2在多烯紫杉醇耐药细胞PC3-DTX中高表达。结论:通过生物信息学方法筛选出在前列腺癌组织和耐药细胞中共同差异表达,且与前列腺癌患者的不良预后密切相关的基因,为前列腺癌诊断/预后和耐药分子标志物的研究提供了新的思路。

16.
Environ Sci Technol ; 53(23): 13607-13617, 2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31682114

RESUMO

Water-soluble organic compounds (WSOC) and methanol-soluble organic compounds (MSOC) in smoke particles emitted from residential coal combustion were characterized by ultrahigh-resolution mass spectrometry. The results showed that the molecular compositions of WSOC and MSOC are different. S-containing compounds (CHOS and CHONS) are found to be the dominant components (65-87%) of the WSOC, whereas CHO and CHON compounds make a great contribution (79-96%) to the MSOC samples. It is worth noting that greater abundance of S-containing compounds was found in smoke produced from coal combustion compared to biomass burning and atmospheric samples. The molecular compositions of WSOC and MSOC also varied significantly depending on the maturity of the coal. The WSOC and MSOC derived from the combustion of low-maturity coal contained a higher proportion of oxidized functional groups but with a lower degree of aromaticity than the compounds derived from the combustion of high-maturity coal. Our findings suggest that organic molecules with a high modified aromaticity index, low O/C ratio, and low polarity showed stronger light absorption. This study also suggests that CHO and CHON compounds significantly contributed to the light absorption of WSOC and MSOC and that the contribution of CHON may be stronger.


Assuntos
Carvão Mineral , Metanol , Ciclotrons , Análise de Fourier , Espectrometria de Massas , Espectrometria de Massas por Ionização por Electrospray , Água
17.
J Am Soc Nephrol ; 30(11): 2159-2176, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31462402

RESUMO

BACKGROUND: Having a comprehensive map of the cellular anatomy of the normal human bladder is vital to understanding the cellular origins of benign bladder disease and bladder cancer. METHODS: We used single-cell RNA sequencing (scRNA-seq) of 12,423 cells from healthy human bladder tissue samples taken from patients with bladder cancer and 12,884 cells from mouse bladders to classify bladder cell types and their underlying functions. RESULTS: We created a single-cell transcriptomic map of human and mouse bladders, including 16 clusters of human bladder cells and 15 clusters of mouse bladder cells. The homology and heterogeneity of human and mouse bladder cell types were compared and both conservative and heterogeneous aspects of human and mouse bladder evolution were identified. We also discovered two novel types of human bladder cells. One type is ADRA2A+ and HRH2+ interstitial cells which may be associated with nerve conduction and allergic reactions. The other type is TNNT1+ epithelial cells that may be involved with bladder emptying. We verify these TNNT1+ epithelial cells also occur in rat and mouse bladders. CONCLUSIONS: This transcriptomic map provides a resource for studying bladder cell types, specific cell markers, signaling receptors, and genes that will help us to learn more about the relationship between bladder cell types and diseases.


Assuntos
Análise de Célula Única , Transcriptoma , Bexiga Urinária/citologia , Bexiga Urinária/metabolismo , Animais , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley , Receptores Adrenérgicos alfa 2/análise , Receptores Histamínicos H2/análise , Análise de Sequência de RNA , Troponina T/análise
18.
Environ Sci Technol ; 53(2): 595-603, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30584761

RESUMO

Brown carbon (BrC) fractions, including water-soluble organic carbon (WSOC), water-soluble humic-like substances (HULISw), alkaline soluble organic carbon (ASOC), and methanol soluble organic carbon (MSOC) were extracted from particles emitted from the residential combustion of coal with different geological maturities. The abundances and light absorption properties of these BrC fractions were comprehensively studied. The results showed that the abundances of the different constituents of the BrC fraction varied greatly with the extraction solvent, accounting for 4.3%-46%, 2.3%-23%, 3.2%-14%, and 76%-98% of the total carbon content in particles. The specific UV-vis absorbance (SUVA254) of BrC fractions followed the order of MSOC > ASOC > HULISw > WSOC. The WSOC and MSOC fractions from the combustion of low maturity coal had relatively low SUVA254 and high SR values. The mass absorption efficiencies (MAE365) for ASOC and MSOC were higher than for WSOC, and WSOC and MSOC from low maturity coal combustion had relatively low levels of light absorption. These findings indicated that coal combustion is a potential source of atmospheric BrC and the abundance and light absorption of the coal combustion-derived BrC fractions were strongly dependent on the extraction methods used and the coal maturity rather than the coal shapes.


Assuntos
Poluentes Atmosféricos , Carvão Mineral , Carbono , China , Monitoramento Ambiental , Material Particulado
19.
Cell Host Microbe ; 24(6): 875-886.e5, 2018 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-30472207

RESUMO

Zika virus (ZIKV) strains can be classified into the ancestral African and contemporary Asian lineages, with the latter responsible for recent epidemics associated with neurological conditions. To understand how Asian strains lead to exacerbated disease, a crucial step is identifying genomic variations that affect infectivity and pathogenicity. Here we use two high-throughput sequencing approaches to assess RNA secondary structures and intramolecular RNA-RNA interactions in vivo for the RNA genomes of Asian and African ZIKV lineages. Our analysis identified functional RNA structural elements and a functional long-range intramolecular interaction specific for the Asian epidemic strains. Mutants that disrupt this extended RNA interaction between the 5' UTR and the E protein coding region reduce virus infectivity, which is partially rescued with compensatory mutants, restoring this RNA-RNA interaction. These findings illuminate the structural basis of ZIKV regulation and provide a resource for the discovery of RNA structural elements important for ZIKV infection.


Assuntos
Genoma Viral/genética , RNA Viral/genética , Proteínas do Envelope Viral/genética , Infecção por Zika virus/virologia , Zika virus/genética , Zika virus/patogenicidade , Animais , Linhagem Celular , Chlorocebus aethiops , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , RNA Viral/química , Células Vero , Proteínas do Envelope Viral/química
20.
J Biomed Res ; 32(5): 343-353, 2018 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-30190448

RESUMO

Prostate cancer preferentially metastasizes to the bone. However, the underlying molecular mechanisms are still unclear. To explore the effects of a bone-mimicking microenvironment on PC3 prostate cancer cell growth and metastasis, we used osteoblast differentiation medium (ODM; minimal essential medium alpha supplemented with L-ascorbic acid) to mimic the bone microenvironment. PC3 cells grown in ODM underwent epithelial-mesenchymal transition and showed enhanced colony formation, migration, and invasion abilities compared to the cells grown in normal medium. PC3 cells grown in ODM showed enhanced metastasis when injected in mice. A screening of signaling pathways related to invasion and metastasis revealed that the NF-κB pathway was activated, which could be reversed by Bay 11-7082, a NF-κB pathway inhibitor. These results indicate that the cells in different culture conditions manifested significantly different biological behaviors and the NF-κB pathway is a potential therapeutic target for prostate cancer bone metastasis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...