Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Chron Obstruct Pulmon Dis ; 16: 1477-1496, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34103907

RESUMO

PURPOSE: Quantitative computed tomography (qCT) imaging-based cluster analysis identified clinically meaningful COPD former-smoker subgroups (clusters) based on cross-sectional data. We aimed to identify progression clusters for former smokers using longitudinal data. PATIENTS AND METHODS: We selected 472 former smokers from SPIROMICS with a baseline visit and a one-year follow-up visit. A total of 150 qCT imaging-based variables, comprising 75 variables at baseline and their corresponding progression rates, were derived from the respective inspiration and expiration scans of the two visits. The COPD progression clusters identified were then associated with subject demography, clinical variables and biomarkers. RESULTS: COPD severities at baseline increased with increasing cluster number. Cluster 1 patients were an obese subgroup with rapid progression of functional small airway disease percentage (fSAD%) and emphysema percentage (Emph%). Cluster 2 exhibited a decrease of fSAD% and Emph%, an increase of tissue fraction at total lung capacity and airway narrowing over one year. Cluster 3 showed rapid expansion of Emph% and an attenuation of fSAD%. Cluster 4 demonstrated severe emphysema and fSAD and significant structural alterations at baseline with rapid progression of fSAD% over one year. Subjects with different progression patterns in the same cross-sectional cluster were identified by longitudinal clustering. CONCLUSION: qCT imaging-based metrics at two visits for former smokers allow for the derivation of four statistically stable clusters associated with unique progression patterns and clinical characteristics. Use of baseline variables and their progression rates enables identification of longitudinal clusters, resulting in a refinement of cross-sectional clusters.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Estudos Transversais , Humanos , Avaliação de Resultados em Cuidados de Saúde , Doença Pulmonar Obstrutiva Crônica/diagnóstico por imagem , Enfisema Pulmonar/diagnóstico por imagem , Fumantes
2.
Sci Rep ; 11(1): 4916, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33649381

RESUMO

Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease and the traditional variables extracted from computed tomography (CT) images may not be sufficient to describe all the topological features of lung tissues in COPD patients. We employed an unsupervised three-dimensional (3D) convolutional autoencoder (CAE)-feature constructor (FC) deep learning network to learn from CT data and derive tissue pattern-clusters jointly. We then applied exploratory factor analysis (EFA) to discover the unobserved latent traits (factors) among pattern-clusters. CT images at total lung capacity (TLC) and residual volume (RV) of 541 former smokers and 59 healthy non-smokers from the cohort of the SubPopulations and Intermediate Outcome Measures in the COPD Study (SPIROMICS) were analyzed. TLC and RV images were registered to calculate the Jacobian (determinant) values for all the voxels in TLC images. 3D Regions of interest (ROIs) with two data channels of CT intensity and Jacobian value were randomly extracted from training images and were fed to the 3D CAE-FC model. 80 pattern-clusters and 7 factors were identified. Factor scores computed for individual subjects were able to predict spirometry-measured pulmonary functions. Two factors which correlated with various emphysema subtypes, parametric response mapping (PRM) metrics, airway variants, and airway tree to lung volume ratio were discriminants of patients across all severity stages. Our findings suggest the potential of developing factor-based surrogate markers for new COPD phenotypes.


Assuntos
Pulmão , Doença Pulmonar Obstrutiva Crônica/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Adulto , Idoso , Estudos de Casos e Controles , Estudos de Coortes , Feminino , Humanos , Pulmão/diagnóstico por imagem , Pulmão/patologia , Masculino , Pessoa de Meia-Idade , Fumantes
3.
J Appl Physiol (1985) ; 127(1): 122-133, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31095459

RESUMO

This study aimed to introduce a one-dimensional (1D) computational fluid dynamics (CFD) model for airway resistance and lung compliance to examine the relationship between airway resistance, pressure, and regional flow distribution. We employed five healthy and five asthmatic subjects who had dynamic computed tomography (CT) scans (4D CT) along with two static scans at total lung capacity and functional residual capacity. Fractional air-volume change ( ΔVairf ) from 4D CT was used for a validation of the 1D CFD model. We extracted the diameter ratio from existing data sets of 61 healthy subjects for computing mean and standard deviation (SD) of airway constriction/dilation in CT-resolved airways. The lobar mean (SD) of airway constriction/dilation was used to determine diameters of CT-unresolved airways. A 1D isothermal energy balance equation was solved, and pressure boundary conditions were imposed at the acinar region (model A) or at the pleural region (model B). A static compliance model was only applied for model B to link acinar and pleural regions. The values of 1D CFD-derived ΔVairf for model B demonstrated better correlation with 4D CT-derived ΔVairf than model A. In both inspiration and expiration, asthmatic subjects with airway constriction show much greater pressure drop than healthy subjects without airway constriction. This increased transpulmonary pressures in the asthmatic subjects, leading to an increased workload (hysteresis). The 1D CFD model was found to be useful in investigating flow structure, lung hysteresis, and pressure distribution for healthy and asthmatic subjects. The derived flow distribution could be used for imposing boundary conditions of 3D CFD. NEW & NOTEWORTHY A one-dimensional (1D) computational fluid dynamics (CFD) model for airway resistance and lung compliance was introduced to examine the relationship between airway resistance, pressure, and regional flow distribution. The 1D CFD model investigated differences of flow structure, lung hysteresis, and pressure distribution for healthy and asthmatic subjects. The derived flow distribution could be used for imposing boundary conditions of three-dimensional CFD.


Assuntos
Resistência das Vias Respiratórias/fisiologia , Asma/fisiopatologia , Pulmão/fisiologia , Pulmão/fisiopatologia , Adulto , Simulação por Computador , Expiração/fisiologia , Feminino , Tomografia Computadorizada Quadridimensional/métodos , Capacidade Residual Funcional/fisiologia , Humanos , Hidrodinâmica , Inalação/fisiologia , Masculino , Modelos Biológicos , Respiração , Testes de Função Respiratória/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA