Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Differ ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898233

RESUMO

Mitochondrial homeostasis is coordinated through communication between mitochondria and the nucleus. In response to stress, mitochondria generate retrograde signals to protect against their dysfunction by activating the expression of nuclear genes involved in metabolic reprogramming. However, the mediators associated with mitochondria-to-nucleus communication pathways remain to be clarified. Here, we identified that hnRNPH1 functions as a pivotal mediator of mitochondrial retrograde signaling to maintain mitochondrial homeostasis. hnRNPH1 accumulates in the nucleus following mitochondrial stress in a 5'-adenosine monophosphate-activated protein kinase (AMPK)-dependent manner. Accordingly, hnRNPH1 interacts with the transcription factor NRF1 and binds to the DRP1 promoter, enhancing the transcription of DRP1. Furthermore, in the cytoplasm, hnRNPH1 directly interacts with DRP1 and enhances DRP1 Ser616 phosphorylation, thereby increasing DRP1 translocation to mitochondrial outer membranes and triggering mitochondrial fission. Collectively, our findings reveal a novel role for hnRNPH1 in the mitochondrial-nuclear communication pathway to maintain mitochondrial homeostasis under stress and suggest that it may be a potential target for mitochondrial dysfunction diseases.

2.
Biochim Biophys Acta Mol Basis Dis ; 1869(8): 166821, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37516255

RESUMO

Development of colorectal cancer (CRC) accompanied with genomic instability. Genomic instability was promoted by microRNAs (miRNAs) inhibiting key genes in DNA damage repair and spindle assembly processes. Whether miR-653-3p affects genomic instability is unknown. The aim of this study is to explore the effect of miR-653-3p on genomic instability in CRC cells. Based on RT-qPCR analysis, miR-653-3p was highly expressed in CRC cells. Through single-cell electrophoresis assay and chromosome karyotype analysis, we determined ectopic expression of miR-653-3p induced increased DNA damage but inhibited apoptosis by promoting chromosomal instability. Mechanistically, luciferase assay identified the direct interaction of miR-653-3p with the 3' UTR of SIRT1, and western blot analysis indicated miR-653-3p inhibited SIRT1 and then promoted STAT3 phosphorylation and TWIST1 expression. The results of karyotype analysis showed that the upregulation of SIRT1 and the downregulation of TWIST1 caused by the downregulation of miR-653-3p suppressed chromosomal instability. Additionally, our evidence showed that miR-653-3p promoted CRC cell proliferation, migration, and 5-FU resistance, and miR-653-3p induced the development of CRC in the xenograft mice model. Altogether, our evidence suggests that miR-653-3p regulates SIRT1/TWIST1 signaling pathway and plays an important role in promoting genomic instability, proliferation, migration, and chemoresistance of CRC cells, which may serve as a promising therapeutic target for CRC therapy.


Assuntos
Neoplasias Colorretais , MicroRNAs , Humanos , Animais , Camundongos , Sirtuína 1/genética , Sirtuína 1/metabolismo , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Transdução de Sinais , Instabilidade Genômica , Instabilidade Cromossômica , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteína 1 Relacionada a Twist/genética
3.
Cell Signal ; 101: 110517, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36332797

RESUMO

Colorectal cancer (CRC) continues to represent one of the major causes of cancer-related mortality and morbidity. MicroRNAs (miRNAs) are confirmed to be involved in modulating substential biological processes by affecting the expression of targeted genes, including carcinogenesis. In the present study, the expression pattern and functional roles of microRNA-15a-5p (miR-15a-5p) in CRC cells were investigated. The data from TCGA database indicated that miR-15a-5p is highly expressed in CRC tissues. Moreover, ectopic expression of miR-15a-5p facilitated the proliferation, migration, and invasion of CRC cells. Furthermore, bioinformatic analysis combinating with dual-luciferase assay revealed that SIRT4 acts as a crucial target of miR-15a-5p. Accordingly, overexpression of SIRT4 suppresses the miR-15a-5p-mediated enhancement in the proliferation, migration, and invasion of CRC cells, while the opposite phenotypes were observed after inhibition of SIRT4. Moreover, we further revealed that miR-15a-5p restrained the expression of SIRT4 to exacerbate the malignant phenotypes by modulating STAT3/TWIST1 and PETN/AKT signaling in CRC cells. Alternatively, inhibition of the miR-15a-5p/SIRT4 axis enhanced the chemosensitivity of 5-fluorouracil- and oxaliplatin-resistant HCT116 cells. Altogether, our evidence suggests that miR-15a-5p plays an essential role in promoting the proliferation, migration, and chemoresistance of CRC cells via targeting SIRT4 to modulate STAT3/TWIST1 and PETN/AKT signaling, which may serve as a promising therapeutic target for CRC therapy.


Assuntos
Neoplasias Colorretais , MicroRNAs , Humanos , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , MicroRNAs/metabolismo , Proteínas Nucleares/metabolismo , Fenótipo , Proteínas Proto-Oncogênicas c-akt/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Transdução de Sinais , Fator de Transcrição STAT3/metabolismo , Proteína 1 Relacionada a Twist/genética , Proteína 1 Relacionada a Twist/metabolismo
4.
J Assist Reprod Genet ; 39(9): 2125-2134, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35861920

RESUMO

BACKGROUND: Premature ovarian insufficiency (POI) occurs in women before the age of 40 years, accompanied by amenorrhea, hypoestrogenism, hypergonadotropinism, and infertility. The pathology of POI is complex and the molecular genetic mechanisms are poorly understood. Bone morphogenetic protein 15 (BMP15) plays a crucial role in oocyte maturation and follicular development through the activation of granulosa cells. Dysfunction of BMP15 causes ovarian dysgenesis and is related to POI. Identifying pathogenic variants contributes to revealing genetic mechanisms and making clinical diagnoses of POI. METHODS: The study involved two sisters diagnosed with POI. Whole-exome sequencing (WES) was performed to identify causative genes. Sanger sequencing was used to validate the mutations in patients with POI and members of the family with no clinical signs or symptoms. The effect of the novel mutations on the BMP15 structure was analyzed by PSIPRED. By over-expressing wild-type (WT) or mutant BMP15 plasmids in vitro, a functional study of the BMP15 mutant was conducted by real-time qPCR and western blotting. Through cocultivation with HEK293T cells, the effects of secreted BMP15 WT and variants on granulosa cell proliferation and apoptosis were detected through a cell counting kit-8 assay and flow cytometric analysis. RESULTS: We identified biallelic variants in BMP15, c.791G > A (p. R264Q) and c.1076C > T (p. P359L), in two siblings with POI. Both sisters carried the same biallelic variants, while the other female members of their family carried only one of them. Structural prediction showed that the variants have not affected the secondary structure of BMP15 but may change the conformation of water molecules around protein surfaces and thermal stability of BMP15. Real-time qPCR showed no significant difference in mRNA levels among WT and the two variants. Western blotting indicated a reduction in BMP15 expression with the c.791G > A and c.1076C > T variants compared to WT. Moreover, mutants 791G > A and 1076C > T impaired the function of secreted BMP15 in promoting granulosa cell proliferation and suppressing cell apoptosis caused by reactive oxygen species. CONCLUSIONS: This study identified novel biallelic variants, c.791G > A and c.1076C > T, of BMP15 in two siblings with POI. Both missense variants reduced the level of the BMP15 protein and impaired the function of BMP15 in promoting granulosa cell proliferation in vitro. Taken together, our findings provide a novel molecular genetic basis and potential pathogenesis of BMP15 variants in POI.


Assuntos
Proteína Morfogenética Óssea 15 , Insuficiência Ovariana Primária , Proteína Morfogenética Óssea 15/genética , Feminino , Células HEK293 , Humanos , Irmãos , Sequenciamento do Exoma
5.
Exp Cell Res ; 418(1): 113265, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35716785

RESUMO

Understanding the mechanisms of colorectal cancer (CRC) progression is critical for developing innovative treatment strategies. As an endoplasmic reticulum-located protein, B cell receptor-associated protein 31 (BCAP31) has been identified to be highly expressed in multiple cancers. However, its function and molecular mechanism in CRC remain not fully understood. In the present study, BCAP31 expression and its correlation with the clinical stage were analyzed based on TCGA database. We demonstrated that loss of BCAP31 suppressed CRC cell proliferation in vitro and tumor growth in vivo. Mechanistically, we demonstrated that Emerin was an interaction partner and downstream molecule of BCAP31. Knockdown of BCAP31 promoted the nuclear envelope localization of Emerin, leading to a reduction of ß-catenin accumulation in the nucleus, which resulted in downregulation of Wnt/ß-catenin downstream target genes, including c-Myc, cyclin D1, Survivin, and Mcl-1. Moreover, downregulation of Emerin partially restored the BCAP31 depletion-mediated ß-catenin protein level and tumor suppressive effects in CRC cells.Our data highlights the pivotal role of BCAP31 depletion in inhibiting cell proliferation in CRC cells, and mechanistically via Emerin/ß-catenin signaling, which may serve as a promising target for CRC treatment.


Assuntos
Neoplasias Colorretais , beta Catenina , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Nucleares , Receptores de Antígenos de Linfócitos B/genética , Via de Sinalização Wnt , beta Catenina/genética , beta Catenina/metabolismo
6.
Int J Mol Sci ; 23(12)2022 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-35743001

RESUMO

Given that exosomes mediate intercellular communication by delivering cellular components to recipient cells or tissue, they have the potential to be engineered to deliver therapeutic payloads. However, the regulatory mechanism of exosome secretion is poorly understood. In addition, mitochondrial components have been found in exosomes, suggesting communication between mitochondria and exosomes. However, the molecular mechanism of the mitochondria and vesicle interaction remains unclear. Here, we showed that mitochondrial thioredoxin 2 (TRX2) decreased exosome concentrations and inhibited HCT116 cell migration. Coimmunoprecipitation/mass spectrometry (Co-IP/MS) showed that TRX2 interacted with Rab35. TRX2 and Rab35 bound to each other at their N-terminal motifs and colocalized on mitochondria. Furthermore, TRX2 induced Rab35 degradation, resulting in impaired exosome secretion. Additionally, Rab35 mediated the suppressive effects of TRX2 on cell migration, and TRX2 suppressed cell migration through exosomes. Taken together, this study first found an interaction between TRX2 and Rab35. These results revealed a new role for TRX2 in the regulation of exosome secretion and cell migration and explained the upstream regulatory mechanism of Rab35. Furthermore, these findings also provide new molecular evidence for communication between mitochondria and vesicles.


Assuntos
Exossomos , Tiorredoxinas , Exossomos/metabolismo , Mitocôndrias/metabolismo , Tiorredoxinas/metabolismo
7.
Biochem Biophys Res Commun ; 615: 116-122, 2022 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-35609416

RESUMO

MicroRNAs (miRNAs) play a crucial role in cancer progression due to their capability to modulate the expression of various target genes. However, given the heterogeneity of tumor cells, miRNAs have been confirmed to exert different regulatory effects. Here, bioinformatic analysis results indicated that expression of miR-330-5p is decreased in colorectal cancer (CRC) tissues and inversely correlated with SND1 expression. Notably, ectopic expression of miR-330-5p restrained tumor cell proliferation, migration, and enhance the sensitivity of CRC cells to 5-FU. Moreover, similar phenotypes were substantiated after inhibition of SND1 expression using RNA interference. Conversely, overexpression of SND1 facilitated the malignant phenotypes of CRC cells and restored miR-330-5p-mediated tumor-suppressive activities in CRC cells. Mechanistically, miR-330-5p directly binds to SND1-3'-untranslated region (3'-UTR), thus involving in inhibiting CRC cells proliferation and invasion and promoting apoptosis. Taken together, miR-330-5p may act as a tumor suppressor by targeting the expression of SND1, suggesting that the miR-330-5p/SND1 axis may be a meaningful regulator for CRC intervention.


Assuntos
Neoplasias Colorretais , MicroRNAs , Regiões 3' não Traduzidas , Apoptose/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Neoplasias Colorretais/patologia , Endonucleases/genética , Endonucleases/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/metabolismo
8.
Nutrients ; 14(4)2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35215376

RESUMO

Inflammatory activation and intestinal flora imbalance play an essential role in the development and progression of colorectal cancer (CRC). Berberine (BBR) has attracted great attention in recent years due to its heath-related benefits in inflammatory disorders and tumors, but the intricate mechanisms have not been fully elucidated. In this study, the effects and the mechanism of BBR on colon cancer were investigated in an azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced colitis-associated carcinogenesis mice model. Our results showed that pre-administration of BBR showed a decrease in weight loss, disease activity index (DAI) score, and the number of colon tumors in mice, compared with the model group. The evidence from pathological examination indicated that the malignancy of intestinal tumors was ameliorated after pre-administration of BBR. Additionally, pre-administration with BBR suppressed the expression of pro-inflammatory factors (interleukin (IL)-6, IL-1ß, cyclooxygenase (COX)-2 and tumor necrosis factor (TNF)-α) and the cell-proliferation marker Ki67, while expression of the tight junction proteins (ZO-1 and occludin) were increased in colon tissue. Moreover, the levels of critical pathway proteins involved in the inflammatory process (p-STAT3 and p-JNK) and cell cycle regulation molecules (ß-catenin, c-Myc and CylinD1) exhibited lower expression levels. Besides, 16S rRNA sequence analysis indicated that pre-administration of BBR increased the ratio of Firmicutes/Bacteroidetes (F:M) and the relative abundance of potentially beneficial bacteria, while the abundance of cancer-related bacteria was decreased. Gavage with Lactobacillus rhamnosus can improve the anti-tumor effect of BBR. Overall, pre-administration of BBR exerts preventive effects in colon carcinogenesis, and the mechanisms underlying these effects are correlated with the inhibition of inflammation and tumor proliferation and the maintenance of intestinal homeostasis.


Assuntos
Berberina , Colite , Microbioma Gastrointestinal , Animais , Azoximetano/toxicidade , Carcinogênese/metabolismo , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Colo/metabolismo , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , RNA Ribossômico 16S/metabolismo
9.
Ann Transl Med ; 9(2): 114, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33569416

RESUMO

BACKGROUND: Colorectal cancer (CRC) is the third major cause of cancer-related death worldwide, and fluorouracil (5-FU) is widely used in the treatment of CRC. However, acquired resistance to 5-FU has become an obstacle in the effective treatment of CRC. Adenosine triphosphate (ATP)-binding cassette sub-family G member 2 (ABCG2) has been found highly expressed in CRC patients with poor responsiveness to folinic acid/5-FU/irinotecan. However, the mechanisms of 5-FU resistance regulated by ABCG2 in CRC cells remain to be comprehensively understood. We aimed to explore the upstream mechanisms of ABCG2 involved in the regulation of chemoresistance in CRC cells. METHODS: We investigated the potential mechanisms of 5-FU resistance in HCT116, RKO, RKO microRNA-21 (miR-21) knockout, and acquired 5-FU-resistant HCT116 (HCT116/FUR) cells. The biochemical and biological analyses were conducted using semiquantitative reverse transcription-polymerase chain reaction (qRT-PCR), western blotting, transfections, and rescue experiments, along with cell proliferation, viability, and colony formation assays. In order to investigate the efficacy of inhibiting the c-Jun NH2 terminal kinase (JNK) pathway to overcome 5-FU resistance, HCT116 and 5-FU-resistant HCT116 cells were inoculated into BALB/c-nu/nu mice to establish the cell-derived xenograft model. RESULTS: The results showed that ABCG2 expression in HCT116/FUR cells was higher compared to HCT116 cells. Overexpression of ABCG2 decreased sensitivity to 5-FU in HCT116 cells, but knockdown of ABCG2 decreased the survival rate in HCT116/FUR cells. Additionally, repressing programmed cell death 4 (PDCD4) activated the JNK pathway in HCT116/FUR cells. Overexpression of PDCD4 inhibited phosphorylation of c-Jun and ABCG2 expression, and recovered sensitivity to 5-FU in HCT116/FUR cells. Moreover, treatment with the JNK pathway inhibitor SP600125 downregulated ABCG2 expression and rescued sensitivity to 5-FU in HCT116/FUR cells. We also found that miR-21 expression in HCT116/FUR cells was higher compared to HCT116 cells. Finally, 5-FU treatment in combination with SP600125 significantly decreased tumorigenicity compared to other treatments in vivo. CONCLUSIONS: Our results demonstrated that 5-FU treatment upregulated miR-21, which directly repressed PDCD4, and subsequently activated the JNK pathway, leading to the upregulation of ABCG2 in CRC cells. Inhibition of the JNK pathway overcame acquired 5-FU resistance both in vivo and in vitro.

10.
Cell Death Dis ; 11(12): 1067, 2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-33318473

RESUMO

MircoRNA-21 (miR-21) was found to be highly expressed in various solid tumors, and its oncogenic properties have been extensively studied in recent years. However, the reason why miR-21 is highly expressed in various tumors remains elusive. Here, we found that the expression of miR-21 was negatively correlated with the expression of vacuole membrane protein-1 (VMP1) in colorectal cancer. Transcription of VMP1 activated either by small activating RNA (saRNA) or transcriptional activator GLI3 inhibited miR-21 expression through reducing its transcripts of VMP1-miR-21 and pri-miR-21, while no significant change in miR-21 expression after exogenous overexpression VMP1 in colorectal cancer cell HCT116. Considering the overlapping location of VMP1 and miR-21 gene in genome, the result suggested that the transcription of miR-21 was inhibited by the endogenous transcriptional activation of VMP1. Furthermore, we identified that miR-21 inhibited the activation and nuclear translocation of transcription factor EB (TFEB) through reducing the inhibitory of PTEN on AKT phosphorylation, which can directly activate the transcription of VMP1. Loss of miR-21 significantly increased VMP1 expression, which could be blocked by PTEN inhibitor (VO-Ohpic) or TFEB siRNA. These results showed that miR-21 negatively regulated VMP1 transcription through the PTEN/AKT/TFEB pathway, and TFEB-induced transcriptional activation of VMP1 could inhibit miR-21 expression, thus forming a feedback regulatory loop of miR-21/VMP1. We further found that disrupting the miR-21/VMP1 feedback loop will decrease the expression of miR-21, reduce the malignancy, and increase their sensitivity to 5-fluorouracil in colorectal cancer cells. Taken together, our results revealed a novel regulatory mechanism of miR-21 expression, and targeting the miR-21/VMP1 feedback loop may provide a new approach to inhibit miR-21 expression in colorectal cancer cells.


Assuntos
Neoplasias Colorretais/genética , Retroalimentação Fisiológica , Regulação Neoplásica da Expressão Gênica , Proteínas de Membrana/metabolismo , MicroRNAs/metabolismo , Autofagia/genética , Sequência de Bases , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Neoplasias Colorretais/ultraestrutura , Humanos , Proteínas de Membrana/genética , MicroRNAs/genética , Modelos Biológicos , PTEN Fosfo-Hidrolase/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Transcrição Gênica , Ativação Transcricional/genética
11.
Int J Biol Macromol ; 164: 3751-3761, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32888997

RESUMO

The planarian flatworm is an ideal model to study the regeneration due to its robust regenerative ability. A variety of cellular response activities have been reported to be involved in the regeneration process, including the mitogen-activated protein kinase (MAPK) signaling. However, the mechanism of MAPK pathway in regenerative responses is still unclear. In this study, we employed the planarian, Dugesia japonica, as the model to investigate the function of MAP-extracellular signal-regulated kinase (MEK), an important component of MAPK signaling pathway, in the regeneration process. We found that MEK was required for the missing tissue response after several amputation and subsequent regeneration. MEK not only affected the size of blastema in the early stage of regeneration by regulating stem cell proliferation, but also determined the planarian's regeneration through balancing cell proliferation and apoptosis. In addition, the activation of Wnt pathway partially rescued regenerative defects induced by inhibition of MEK. Taken together, our results highlight a crucial role of MEK signaling in the planarian regeneration.


Assuntos
MAP Quinase Quinase Quinases/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Planárias/genética , Regeneração/genética , Animais , Proliferação de Células/genética , MAP Quinases Reguladas por Sinal Extracelular/genética , Sistema de Sinalização das MAP Quinases/genética , Planárias/crescimento & desenvolvimento , Transdução de Sinais/genética
12.
J Cell Biochem ; 121(4): 2802-2810, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31692055

RESUMO

BAX is an important proapoptotic protein of the BCL-2 family, and its stability is essential for the regulation of the mitochondrial apoptotic pathway. A previous study revealed that BAX could undergo degradation through the ubiquitin-proteasome pathway. In this study, we identified two lysine sites, K21 and K123, that were critical ubiquitin-binding sites in BAX. Mutation of these two sites prolonged the half-life of BAX and also affected its proapoptotic ability. Intriguingly, we found that ABT-737, a BCL-2 inhibitor, significantly enhanced TRAIL-induced BAX degradation in HCT116 cells and increased TRAIL-induced apoptosis in the HCT116 only with the BAX K21R/K123R mutant, not other BAX mutants. In addition, overexpression of PARKIN, an E3 ubiquitin ligase targeting BAX, dramatically decreased BAX protein level when only treated with ABT-737 in HCT116 cells. Therefore, we speculated that BAX activation is essential for its ubiquitin-dependent degradation.


Assuntos
Ubiquitina/metabolismo , Proteína X Associada a bcl-2/metabolismo , Apoptose , Sítios de Ligação , Compostos de Bifenilo/farmacologia , Linhagem Celular Tumoral , Células HCT116 , Humanos , Lisina/química , Mitocôndrias/metabolismo , Mutação , Nitrofenóis/farmacologia , Fases de Leitura Aberta , Piperazinas/farmacologia , Sulfonamidas/farmacologia , Ubiquitina/química , Ubiquitinação
13.
Cell Physiol Biochem ; 47(2): 680-693, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29794421

RESUMO

BACKGROUND/AIMS: Mutations in the Ras/Raf/MEK/ERK pathway are detected in 50% of colorectal cancer cases and play a crucial role in cancer development and progression. Cobimetinib is a MEK inhibitor approved for the treatment of advanced melanoma and inhibits the cell viability of other types of cancer cells. METHODS: HCT116 colorectal cancer cells were treated with cobimetinib, and MTT assay, colony formation assay, and flow cytometry were used to evaluate cell viability, cell cycle, and apoptosis, respectively. The expression of genes associated with the cell cycle and apoptosis were evaluated by quantitative real-time PCR and western blotting. To explore use of cobimetinib in colorectal cancer treatment and further understand its mechanisms, RNA-seq technology was used to identify differentially expressed genes (DEGs) between cobimetinib-treated and untreated HCT116 cells. Furthermore, we compared these DEGs with Gene Expression Omnibus data from colorectal cancer tissues and normal colonic epithelial tissues. RESULTS: We found that cobimetinib not only inhibited cell proliferation but also induced G1 phase arrest and apoptosis in HCT116 colorectal cancer cells, suggesting that cobimetinib may useful in colorectal cancer therapy. After cobimetinib treatment, 3,495 DEGs were obtained, including 2,089 upregulated genes and 1,406 downregulated genes, and most of these DEGs were enriched in the cell cycle, DNA replication, and DNA damage repair pathways. Our results revealed that some genes with high expression in colorectal cancer tissues were downregulated by cobimetinib in HCT116 cells, including CCND1, E2F1, CDC25C, CCNE2, MYC, and PCNA. These genes have vital roles in DNA replication and the cell cycle. Furthermore, genes with low expression in colorectal cancer tissues were upregulated by cobimetinib, including PRKCA, PI3K, RTK, and PKC. Based on our results, the PKC and PI3K pathways were activated after cobimetinib treatment, and inhibition of these two pathways can increase the cytotoxicity of cobimetinib in HCT116 cells. Notably, cobimetinib appeared to enhance the efficacy of 5-fluorouracil (5-FU) by decreasing TYMS expression, high expression of which is responsible for 5-FU resistance in colorectal cancer. CONCLUSIONS: Our results suggest the potential use of cobimetinib in colorectal cancer therapy.


Assuntos
Apoptose/efeitos dos fármacos , Azetidinas/farmacologia , MAP Quinase Quinase Quinases/metabolismo , Piperidinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Linhagem Celular Tumoral , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Ciclina D1/genética , Ciclina D1/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Regulação para Baixo/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Fluoruracila/farmacologia , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Células HCT116 , Humanos , MAP Quinase Quinase Quinases/antagonistas & inibidores , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Timidilato Sintase/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Regulação para Cima/efeitos dos fármacos
14.
Cell Physiol Biochem ; 46(3): 1065-1077, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29669315

RESUMO

BACKGROUND/AIMS: Giant pandas, an endangered species, are a powerful symbol of species conservation. Giant pandas may suffer from a variety of diseases. Owing to their highly specialized diet of bamboo, giant pandas are thought to have a relatively weak ability to resist diseases. The spleen is the largest organ in the lymphatic system. However, there is little known about giant panda spleen at a molecular level. Thus, clarifying the regulatory mechanisms of spleen could help us further understand the immune system of the giant panda as well as its conservation. METHODS: The two giant panda spleens were from two male individuals, one newborn and one an adult, in a non-pathological condition. The whole transcriptomes of mRNA, lncRNA, miRNA, and circRNA in the two spleens were sequenced using the Illumina HiSeq platform. EBseq and IDEG6 were used to observe the differentially expressed genes (DEGs) between these two spleens. Gene Ontology and KEGG analyses were used to annotate the function of DEGs. Furthermore, networks between non-coding RNAs and protein-coding genes were constructed to investigate the relationship between non-coding RNAs and immune-associated genes. RESULTS: By comparative analysis of the whole transcriptomes of these two spleens, we found that one of the major roles of lncRNAs could be involved in the regulation of immune responses of giant panda spleens. In addition, our results also revealed that microRNAs and circRNAs may have evolved to regulate a large set of biological processes of giant panda spleens, and circRNAs may function as miRNA sponges. CONCLUSION: To our knowledge, this is the first report of lncRNAs and circRNAs in giant panda, which could be a useful resource for further giant panda research. Our study reveals the potential functional roles of miRNAs, lncRNAs, and circRNAs in giant panda spleen.


Assuntos
Sistema Imunitário/metabolismo , RNA Longo não Codificante/metabolismo , Baço/metabolismo , Transcriptoma , Ursidae/genética , Animais , MicroRNAs/metabolismo , RNA/química , RNA/isolamento & purificação , RNA/metabolismo , RNA Mensageiro/metabolismo , Análise de Sequência de RNA , Ursidae/metabolismo
15.
J Cell Biochem ; 119(7): 5875-5884, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29575081

RESUMO

Most animals hold the ability to regenerate damaged cells, tissues, and even any lost part of their bodies. To date, there is little known about the precise regulatory mechanism of regeneration and many fundamental questions remain unanswered. To further understand the precise regulatory mechanism of regeneration, we used planarian Dugesia japonica as a model and sequenced the transcriptomes of their regenerated tissues at different regeneration stages. Through de novo assembly and expression profiling, we found that Heat shock protein and MAPK pathway were involved into early response of regeneration in D. japonica. In addition, immune response, cell proliferation, and migration were activated during regeneration. Of notes, our results revealed a specific functional role of programmed cell death (PCD) in regeneration of D. japonica. PCD may not only remove the damaged and superfluous tissues for further patterning with regenerated tissues, but also provide signals to trigger neoblasts proliferation and differentiation directly. Together, our results revealed Heat shock protein and MAPK pathway mediated early response of regeneration and found a dual role of PCD in regeneration D. japonica. Meanwhile, we constructed regulatory networks of apoptosis, autophagy, and related signaling pathways and proposed a schematic model, which provided a global landscape of regeneration.


Assuntos
Apoptose/genética , Perfilação da Expressão Gênica , Proteínas de Helminto/genética , Planárias/genética , Regeneração/genética , Transcriptoma , Animais , Diferenciação Celular , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Planárias/crescimento & desenvolvimento
16.
Ecol Evol ; 7(17): 7047-7057, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28904782

RESUMO

Blue sheep, Pseudois nayaur, is endemic to the Tibetan Plateau and the surrounding mountains, which are the highest-elevation areas in the world. Classical morphological taxonomy suggests that there are two subspecies in genus Pseudois (Bovidae, Artiodactyla), namely Pseudois nayaur nayaur and Pseudois nayaur szechuanensis. However, the validity and geographic characteristics of these subspecies have never been carefully discussed and analyzed. This may be partially because previous studies have mainly focused on the vague taxonomic status of Pseudois schaeferi (dwarf blue sheep). Thus, there is an urgent need to investigate the evolutionary relationship and taxonomy system of this genus. This study enriches a previous dataset by providing a large number of new samples, based on a total of 225 samples covering almost the entire distribution of blue sheep. Molecular data from cytochrome b and the mitochondrial control region sequences were used to reconstruct the phylogeny of this species. The phylogenetic inferences show that vicariance plays an important role in diversification within this genus. In terms of molecular dating results and biogeographic analyses, the striking biogeographic pattern coincides significantly with major geophysical events. Although the results raise doubt about the present recognized distribution range of blue sheep, they have corroborated the validity of the identified subspecies in genus Pseudois. Meanwhile, these results demonstrate that the two geographically distinct populations, the Helan Mountains and Pamir Plateau populations, have been significantly differentiated from the identified subspecies, a finding that challenges the conventional taxonomy of blue sheep.

17.
Materials (Basel) ; 10(4)2017 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-28772734

RESUMO

In this study, novel photocatalyst monolith materials were successfully fabricated by a non-solvent induced phase separation (NIPS) technique. By adding a certain amount of ethyl acetate (as non-solvent) into a cellulose/LiCl/N,N-dimethylacetamide (DMAc) solution, and successively adding titanium dioxide (TiO2) nanoparticles (NPs), cellulose/TiO2 composite monoliths with hierarchically porous structures were easily formed. The obtained composite monoliths possessed mesopores, and two kinds of macropores. Scanning Electron Microscope (SEM), Energy Dispersive Spectroscopy (EDS), Fourier Transform Infrared Spectroscopy (FT-IR), X-ray Diffraction (XRD), Brunauer-Emmett-Teller (BET), and Ultraviolet-visible Spectroscopy (UV-Vis) measurements were adopted to characterize the cellulose/TiO2 composite monolith. The cellulose/TiO2 composite monoliths showed high efficiency of photocatalytic activity in the decomposition of methylene blue dye, which was decomposed up to 99% within 60 min under UV light. Moreover, the composite monoliths could retain 90% of the photodegradation efficiency after 10 cycles. The novel NIPS technique has great potential for fabricating recyclable photocatalysts with highly efficiency.

18.
Cancer Res ; 77(18): 4773-4784, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28687618

RESUMO

Ubiquitination-directed protein degradation is important in many cancers for tumor initiation and maintenance, and E3 ligases containing HECT domains are emerging as new therapeutic targets. In contrast to many other E3 ligases, the role of HUWE1 in ovarian cancer where HUWE1 is dysregulated has been unclear. Here we report that genetic deletion of Huwe1 in the mouse inhibits transformation of ovary surface epithelium cells without significantly affecting cell survival and apoptosis, and that Huwe1 deletion after tumors have been initiated inhibits tumor growth. In Huwe1-deficient cells, expression of histone H1.3 increased, inhibiting the expression of noncoding RNA H19H19 silencing phenocopied the effects of Huwe1 deficiency, whereas H1.3 silencing partially rescued the expression of H19 and the Huwe1-null phenotype. Inducible silencing of HUWE1 in human ovarian cancer cells produced a similar phenotype. Mechanistically, HUWE1 bound and ubiquitinated H1.3, which was consequently marked for destruction by proteasomes. Our results establish that HUWE1 plays an essential role in promoting ovarian cancer. Cancer Res; 77(18); 4773-84. ©2017 AACR.


Assuntos
Transformação Celular Neoplásica/patologia , Células Epiteliais/patologia , Histonas/metabolismo , Neoplasias Ovarianas/patologia , Ubiquitina-Proteína Ligases/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Células Epiteliais/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Histonas/genética , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Camundongos Nus , Invasividade Neoplásica , Metástase Neoplásica , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Proteólise , Células Tumorais Cultivadas , Proteínas Supressoras de Tumor , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitinação , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Mol Cancer Ther ; 16(9): 1979-1988, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28619760

RESUMO

Heat shock protein 90 (Hsp90) is widely overexpressed in cancer cells and necessary for maintenance of malignant phenotypes. Hsp90 inhibition induces tumor cell death through degradation of its client oncoproteins and has shown promises in preclinical studies. However, the mechanism by which Hsp90 inhibitors kill tumor cells is not well-understood. Biomarkers associated with differential sensitivity and resistance to Hsp90 inhibitors remain to be identified. In this study, we found that colorectal cancer cells containing inactivating mutations of FBW7, a tumor suppressor and E3 ubiquitin ligase, are intrinsically insensitive to Hsp90 inhibitors. The insensitive colorectal cancer cells lack degradation of Mcl-1, a prosurvival Bcl-2 family protein. Hsp90 inhibition promotes GSK3ß-dependent phosphorylation of Mcl-1, which subsequently binds to FBW7 and undergoes ubiquitination and proteasomal degradation. Specifically blocking Mcl-1 phosphorylation by genetic knock-in abrogates its degradation and renders in vitro and in vivo resistance to Hsp90 inhibitors, which can be overcame by Mcl-1-selective small-molecule inhibitors. Collectively, our findings demonstrate a key role of GSK3ß/FBW7-dependent Mcl-1 degradation in killing of colorectal cancer cells by Hsp90 inhibitors and suggest FBW7 mutational status as a biomarker for Hsp90-targeted therapy. Mol Cancer Ther; 16(9); 1979-88. ©2017 AACR.


Assuntos
Antineoplásicos/farmacologia , Proteína 7 com Repetições F-Box-WD/metabolismo , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Neoplasias/metabolismo , Animais , Apoptose/genética , Linhagem Celular Tumoral , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/genética , Proteína 7 com Repetições F-Box-WD/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Xenoenxertos , Humanos , Camundongos , Mutação , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Fosforilação , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Proteólise , RNA Interferente Pequeno/genética
20.
Biomed Pharmacother ; 89: 894-901, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28292017

RESUMO

Hepatocellular carcinoma(HCC) is one of the most common malignancies worldwide, however, drug resistance is still a tough problem of it. As in many other cancers, p53 mutations are commonly observed in HCCs (Hussain et al., 2007; Levine et al., 1994) [1,2]. Tumor tissues with mutant p53 seems to be more aggressive and resist to chemotherapy than that harboring wide-type p53 (Harris and Hollstein, 1994; Parrales and Iwakuma, 2015) [3,4]. (-)-Curine, a novel bisbenzylisoquinoline alkaloid, is one of the main components isolated from the roots of Cyclea wattii. Here, it was found to exert cytotoxity on hepatocellular carcinoma (HCC) cells regardless of p53 status. We found that (-)-curine induced G1 arrest and cell death in HepG2 cells with wild-type p53 as well as Huh-7 cells with mutant p53. In HepG2 cells, knocking down of p53 did not change its cellular responses to (-)-curine, and same degree of G1 arrest and cell death were occurred after p53 knockdown. Taken together, our data demonstrate that (-)-curine can inhibit viability of hepatocellular carcinoma cells in regardless of p53 status. It shed light on new therapy methods for HCC.


Assuntos
Carcinoma Hepatocelular/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Isoquinolinas/farmacologia , Neoplasias Hepáticas/metabolismo , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Linhagem Celular Tumoral , Humanos , Isoquinolinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA