Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 174
Filtrar
1.
Nat Med ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740994

RESUMO

Emotional distress (ED), commonly characterized by symptoms of depression and/or anxiety, is prevalent in patients with cancer. Preclinical studies suggest that ED can impair antitumor immune responses, but few clinical studies have explored its relationship with response to immune checkpoint inhibitors (ICIs). Here we report results from cohort 1 of the prospective observational STRESS-LUNG study, which investigated the association between ED and clinical efficacy of first-line treatment of ICIs in patients with advanced non-small-cell lung cancer. ED was assessed by Patient Health Questionnaire-9 and Generalized Anxiety Disorder 7-item scale. The study included 227 patients with 111 (48.9%) exhibiting ED who presented depression (Patient Health Questionnaire-9 score ≥5) and/or anxiety (Generalized Anxiety Disorder 7-item score ≥5) symptoms at baseline. On the primary endpoint analysis, patients with baseline ED exhibited a significantly shorter median progression-free survival compared with those without ED (7.9 months versus 15.5 months, hazard ratio 1.73, 95% confidence interval 1.23 to 2.43, P = 0.002). On the secondary endpoint analysis, ED was associated with lower objective response rate (46.8% versus 62.1%, odds ratio 0.54, P = 0.022), reduced 2-year overall survival rate of 46.5% versus 64.9% (hazard ratio for death 1.82, 95% confidence interval 1.12 to 2.97, P = 0.016) and detriments in quality of life. The exploratory analysis indicated that the ED group showed elevated blood cortisol levels, which was associated with adverse survival outcomes. This study suggests that there is an association between ED and worse clinical outcomes in patients with advanced non-small-cell lung cancer treated with ICIs, highlighting the potential significance of addressing ED in cancer management. ClinicalTrials.gov registration: NCT05477979 .

2.
Langmuir ; 40(20): 10561-10570, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38728666

RESUMO

The weak adsorption of oxygen on transition metal oxide catalysts limits the improvement of their electrocatalytic oxygen reduction reaction (ORR) performance. Herein, a dopamine-assisted method is developed to prepare Mn-doped ceria supported on nitrogen-doped carbon nanotubes (Mn-Ce-NCNTs). The morphology, dispersion of Mn-doped ceria, composition, and oxygen vacancies of the as-prepared catalysts were analyzed using various technologies. The results show that Mn-doped ceria was formed and highly dispersed on NCNTs, on which oxygen vacancies are abundant. The as-prepared Mn-Ce-NCNTs exhibit a high ORR performance, on which the average electron transfer number is 3.86 and the current density is 24.4% higher than that of commercial 20 wt % Pt/C. The peak power density of Mn-Ce-NCNTs is 68.1 mW cm-2 at the current density of 138.9 mA cm-2 for a Zn-air battery, which is close to that of 20 wt % Pt/C (69.4 mW cm-2 at 106.1 mA cm-2). Density functional theory (DFT) calculations show that the oxygen vacancy formation energies of Mn-doped CeO2(111) and pure CeO2(111) are -0.55 and 2.14 eV, respectively. Meanwhile, compared with undoped CeO2(111) (-0.02 eV), Mn-doped CeO2(111) easily adsorbs oxygen with the oxygen adsorption energy of only -0.68 eV. This work provides insights into the synergetic effect of Mn-doped ceria for facilitating oxygen adsorption and enhancing ORR performance.

3.
npj Quantum Inf ; 10(1): 46, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38706554

RESUMO

Correlated noise across multiple qubits poses a significant challenge for achieving scalable and fault-tolerant quantum processors. Despite recent experimental efforts to quantify this noise in various qubit architectures, a comprehensive understanding of its role in qubit dynamics remains elusive. Here, we present an analytical study of the dynamics of driven qubits under spatially correlated noise, including both Markovian and non-Markovian noise. Surprisingly, we find that by operating the qubit system at low temperatures, where correlated quantum noise plays an important role, significant long-lived entanglement between qubits can be generated. Importantly, this generation process can be controlled on-demand by turning the qubit driving on and off. On the other hand, we demonstrate that by operating the system at a higher temperature, the crosstalk between qubits induced by the correlated noise is unexpectedly suppressed. We finally reveal the impact of spatio-temporally correlated 1/f noise on the decoherence rate, and how its temporal correlations restore lost entanglement. Our findings provide critical insights into not only suppressing crosstalk between qubits caused by correlated noise but also in effectively leveraging such noise as a beneficial resource for controlled entanglement generation.

4.
Sci Rep ; 14(1): 11185, 2024 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755275

RESUMO

The brain presents age-related structural and functional changes in the human life, with different extends between subjects and groups. Brain age prediction can be used to evaluate the development and aging of human brain, as well as providing valuable information for neurodevelopment and disease diagnosis. Many contributions have been made for this purpose, resorting to different machine learning methods. To solve this task and reduce memory resource consumption, we develop a mini architecture of only 10 layers by modifying the deep residual neural network (ResNet), named ResNet mini architecture. To support the ResNet mini architecture in brain age prediction, the brain age dataset (OpenNeuro #ds000228) that consists of 155 study participants (three classes) and the Alzheimer MRI preprocessed dataset that consists of 6400 images (four classes) are employed. We compared the performance of the ResNet mini architecture with other popular networks using the two considered datasets. Experimental results show that the proposed architecture exhibits generality and robustness with high accuracy and less parameter number.


Assuntos
Envelhecimento , Encéfalo , Imageamento por Ressonância Magnética , Redes Neurais de Computação , Humanos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Envelhecimento/fisiologia , Imageamento por Ressonância Magnética/métodos , Aprendizado Profundo , Idoso , Doença de Alzheimer/diagnóstico por imagem , Aprendizado de Máquina , Feminino , Idoso de 80 Anos ou mais , Masculino , Pessoa de Meia-Idade
5.
Medicine (Baltimore) ; 103(16): e37842, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38640288

RESUMO

RATIONALE: Guidewire fracture is one of the biggest risks of percutaneous coronary intervention, twisting wire technique is very useful for retrieving the fractured wire, but the potential risks have been inadequately reported. Herein, we present a case of retrieval of guidewire fragments using the twisting wire technique that causes coronary perfusion. PATIENT CONCERNS: A 37-year-old male patient was admitted to our hospital for elective percutaneous coronary intervention of the left circumflex coronary artery. CLINICAL FINDINGS: For chronic total occlusion of the distal left circumflex coronary artery, antegrade recanalization by wire escalation, and parallel wire techniques were attempted. However, we shockingly found that the BMW guidewire, anchored in the right coronary artery, spontaneously fractured from the proximal right coronary artery, and a lengthy fragment of the guidewire remained in the coronary. DIAGNOSES, INTERVENTIONS, AND OUTCOMES: Many attempts were made to retrieve the remnant guidewire including the twisting wire technique, which leads to the perforation of the coronary. OUTCOMES: Finally, percutaneous retrieving procedures were stopped in favor of surgical extraction via a small coronary arteriotomy. This procedure was successful. LESSONS: To the best of our knowledge, the present case is the first reported spontaneous fracture of the guidewire. Leaving such a lengthy remnant guidewire in the artery, or leaving stenting over the wire, would impose a high risk of coronary thrombosis, perforation, and embolization. Yet, the perforation of the artery that occurred in this case, which could have had life-threatening consequences, resulted from our attempts to retrieve the guidewire using the twisting wire technique.


Assuntos
Angioplastia Coronária com Balão , Intervenção Coronária Percutânea , Masculino , Humanos , Adulto , Angioplastia Coronária com Balão/métodos , Angiografia Coronária , Intervenção Coronária Percutânea/efeitos adversos , Vasos Coronários/diagnóstico por imagem , Vasos Coronários/cirurgia , Perfusão , Resultado do Tratamento
6.
Nanoscale ; 16(18): 8941-8949, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38644794

RESUMO

Single-site Fe-N-C catalysts are the most promising Pt-group catalyst alternatives for the oxygen reduction reaction, but their application is impeded by their relatively low activity and unsatisfactory stability as well as production costs. Here, cobalt atoms are introduced into an Fe-N-C catalyst to enhance its catalytic activity by utilizing the synergistic effect between Fe and Co atoms. Meanwhile, phenanthroline is employed as the ligand, which favours stable pyridinic N-coordinated Fe-Co sites. The obtained catalysts exhibit excellent ORR performance with a half-wave potential of 0.892 V and good stability under alkaline conditions. In addition, the excellent ORR activity and durability of FeCo-N-C enabled the constructed zinc-air battery to exhibit a high power density of 247.93 mW cm-2 and a high capacity of 768.59 mA h gZn-1. Moreover, the AEMFC based on FeCo-N-C also achieved a high open circuit voltage (0.95 V) and rated power density (444.7 mW cm-2), surpassing those of many currently reported transition metal-based cathodes. This work emphasizes the feasibility of this non-precious metal catalyst preparation strategy and its practical applicability in fuel cells and metal-air batteries.

7.
Nanoscale ; 16(19): 9169-9185, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38639199

RESUMO

Dual-atom site catalysts (DASCs) have sparked considerable interest in heterogeneous photocatalysis as they possess the advantages of excellent photoelectronic activity, photostability, and high carrier separation efficiency and mobility. The DASCs involved in these important photocatalytic processes, especially in the photocatalytic hydrogen evolution reaction (HER), CO2 reduction reaction (CO2RR), N2/nitrate reduction, etc., have been extensively investigated in the past few years. In this review, we highlight the recent progress in DASCs that provides fundamental insights into the photocatalytic conversion of small molecules. The controllable preparation and characterization methods of various DASCs are discussed. Subsequently, the reaction mechanisms of the formation of several important molecules (hydrogen, hydrocarbons and ammonia) on DASCs are introduced in detail, in order to probe the relationship between DASCs's structure and photocatalytic activity. Finally, some challenges and outlooks of DASCs in the photocatalytic conversion of small molecules are summarized and prospected. We hope that this review can provide guidance for in-depth understanding and aid in the design of efficient DASCs for photocatalysis.

8.
J Gastroenterol ; 59(5): 411-423, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38461467

RESUMO

BACKGROUND: The tumor microbiome has been characterized in several malignancies; however, no previous studies have investigated its role in intrahepatic cholangiocarcinoma (ICC). Hence, we explored the tumor microbiome and its association with prognosis in ICC. METHODS: One hundred and twenty-one ICC tumor samples and 89 adjacent normal tissues were profiled by 16S rRNA sequencing. Microbial differences between tumor and adjacent nontumoral liver tissues were assessed. Tumor microbial composition was then evaluated to detect its association with prognosis. Finally, a risk score calculated by the tumor microbiota was accessed by the least absolute shrinkage and selector operator method (Lasso) to predict prognosis of ICC. RESULTS: The tumor microbiome displayed a greater diversity than that in adjacent nontumoral liver tissues. Tumor samples were characterized by a higher abundance of Firmicutes, Actinobacteria, Bacteroidetes, and Acidobacteriota. Higher tumor microbial α diversity was associated with lymph node metastasis and predicted shortened overall survival (OS) and recurrence-free survival (RFS). A total of 11 bacteria were selected to generate the risk score by Lasso. This score showed potential in predicting OS, and was an independent risk factor for OS. CONCLUSION: In conclusion, our study characterized the tumor microbiome and revealed its role in predicting prognosis in ICC.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , RNA Ribossômico 16S/genética , Prognóstico , Colangiocarcinoma/patologia , Ductos Biliares Intra-Hepáticos/patologia , Neoplasias dos Ductos Biliares/patologia , Estudos Retrospectivos
9.
Small ; : e2309448, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38362699

RESUMO

Hydrogen peroxide (H2 O2 ) is a highly value-added and environmental-friendly chemical with various applications. The production of H2 O2 by electrocatalytic 2e- oxygen reduction reaction (ORR) has emerged as a promising alternative to the energy-intensive anthraquinone process. High selectivity Catalysts combining with superior activity are critical for the efficient electrosynthesis of H2 O2 . Earth-abundant transition metal selenides (TMSs) being discovered as a classic of stable, low-cost, highly active and selective catalysts for electrochemical 2e- ORR. These features come from the relatively large atomic radius of selenium element, the metal-like properties and the abundant reserves. Moreover, compared with the advanced noble metal or single-atom catalysts, the kinetic current density of TMSs for H2 O2 generation is higher in acidic solution, which enable them to become suitable catalyst candidates. Herein, the recent progress of TMSs for ORR to H2 O2 is systematically reviewed. The effects of TMSs electrocatalysts on the activity, selectivity and stability of ORR to H2 O2 are summarized. It is intended to provide an insight from catalyst design and corresponding reaction mechanisms to the device setup, and to discuss the relationship between structure and activity.

10.
Phys Rev Lett ; 132(3): 036701, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38307041

RESUMO

We propose an experimentally feasible dissipative spin-wave diode comprising two magnetic layers coupled via a nonmagnetic spacer. We theoretically demonstrate that the spacer mediates not only coherent interactions but also dissipative coupling. Interestingly, an appropriately engineered dissipation engenders a nonreciprocal device response, facilitating the realization of a spin-wave diode. This diode permits wave propagation in one direction alone, given that the coherent Dzyaloshinskii-Moriya (DM) interaction is balanced with the dissipative coupling. The polarity of the diode is determined by the sign of the DM interaction. Furthermore, we show that when the magnetic layers undergo incoherent pumping, the device operates as a unidirectional spin-wave amplifier. The amplifier gain is augmented by cascading multiple magnetic bilayers. By extending our model to a one-dimensional ring structure, we establish a connection between the physics of spin-wave amplification and non-Hermitian topology. Our proposal opens up a new avenue for harnessing inherent dissipation in spintronic applications.

11.
Inorg Chem ; 63(10): 4697-4706, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38407040

RESUMO

Benefiting from the unique photoluminescence behavior of the lanthanide(III) ions and organic ligands, a lanthanide(III) metal-organic framework (Ln-MOF) material can simultaneously demonstrate photoluminescence of lanthanide(III) cations and organic molecules and endow its superior applications of fluorescence sensing behaviors. Herein, we present a europium(III) MOF material {[Eu2(BPTA)·(CH3COO)2·3DMA]·0.5DMA·3H2O}n (1) (where H4BPTA is 3,3',5,5'-biphenyltetracarboxylic acid) for photoluminescence performance of quantitatively sensing the inflammatory marker neopterin (Neo). The obtained 1 comprises Eu2(COO)4 paddlewheel secondary building units, which could be bridged by BPTA4- ligands to extend a 2D framework. The fluorescence titration indicates 1 can achieve simultaneous fluorescence behavior of Eu3+ ions and Neo via on-off ratiometric effects and thus could be exploited as the ratiometric fluorescence sensor matrix. Such a fluorescence phenomenon of 1 as a ratiometric sensor for quantitative detection of Neo via an on-off ratiometric effect is never observed in MOF chemistry. Moreover, naked-eye visible color variations of the fluorescence for 1 could be observed from red to blue with increasing concentrations of Neo, confirmed by fluorescent test strips as well as portable fluorescent hydrogels. And 1 also shows a low detection limit of 15.11 nM. A synergetic contribution of the competitive absorption, fluorescence resonance energy-transfer, and photoinduced electron-transfer mechanisms between Neo and the framework of 1 realizes the on-off ratiometric fluorescence behavior for Neo detection, supported by the UV-vis spectral overlap experiment and DFT calculations.

12.
Adv Sci (Weinh) ; 11(1): e2306693, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37964410

RESUMO

Lignin is the main component of lignocellulose and the largest source of aromatic substances on the earth. Biofuel and bio-chemicals derived from lignin can reduce the use of petroleum products. Current advances in lignin catalysis conversion have facilitated many of progress, but understanding the principles of catalyst design is critical to moving the field forward. In this review, the factors affecting the catalysts (including the type of active metal, metal particle size, acidity, pore size, the nature of the oxide supports, and the synergistic effect of the metals) are systematically reviewed based on the three most commonly used supports (carbon, oxides, and zeolites) in lignin hydrogenolysis. The catalytic performance (selectivity and yield of products) is evaluated, and the emerging catalytic mechanisms are introduced to better understand the catalyst design guidelines. Finally, based on the progress of existing studies, future directions for catalyst design in the field of lignin depolymerization are proposed.

13.
J Am Chem Soc ; 145(46): 25252-25263, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37957828

RESUMO

The development of highly active and low-cost oxygen reduction reaction (ORR) catalysts is crucial for the practical application of hydrogen fuel cells. However, the linear scaling relation (LSR) imposes an inherent Sabatier's limitation for most catalysts including the benchmark Pt with an insurmountable overpotential ceiling, impeding the development of efficient electrocatalysts. To avoid such a limitation, using earth-abundant metal oxides with different crystal phases as model materials, we propose an effective and dynamic reaction pathway through constructing spatially correlated Pt-Mn pair sites, achieving an excellent balance between high activity and low Pt loading. Experimental and theoretical calculations demonstrate that manipulating the intermetallic distance and charge distribution of Pt-Mn pairs can effectively promote O-O bond cleavage at these sites through a bridge configuration, circumventing the formation of *OOH intermediates. Meanwhile, the dynamic adsorption configuration transition from the bridge configuration of O2 to the end-on configuration of *OH improves *OH desorption at the Mn site within such pairs, thereby avoiding Sabatier's limitation. The well-designed Pt-Mn/ß-MnO2 exhibits outstanding ORR activity and stability with a half-wave potential of 0.93 V and barely any activity degradation for 70 h. When applied to the cathode of a H2-O2 anion-exchange membrane fuel cell, this catalyst demonstrates a high peak power density of 287 mW cm-2 and 500 h of stability under a cell voltage of 0.6 V. This work reveals the adaptive bonding interactions of atomic pair sites with multiple reactant/intermediates, offering a new avenue for rational design of highly efficient atomic-level dispersed ORR catalysts beyond the Sabatier optimum.

14.
Front Med ; 17(4): 585-616, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37725232

RESUMO

Immune checkpoint inhibitors (ICIs) have demonstrated unparalleled clinical responses and revolutionized the paradigm of tumor treatment, while substantial patients remain unresponsive or develop resistance to ICIs as a single agent, which is traceable to cellular metabolic dysfunction. Although dysregulated metabolism has long been adjudged as a hallmark of tumor, it is now increasingly accepted that metabolic reprogramming is not exclusive to tumor cells but is also characteristic of immunocytes. Correspondingly, people used to pay more attention to the effect of tumor cell metabolism on immunocytes, but in practice immunocytes interact intimately with their own metabolic function in a way that has never been realized before during their activation and differentiation, which opens up a whole new frontier called immunometabolism. The metabolic intervention for tumor-infiltrating immunocytes could offer fresh opportunities to break the resistance and ameliorate existing ICI immunotherapy, whose crux might be to ascertain synergistic combinations of metabolic intervention with ICIs to reap synergic benefits and facilitate an adjusted anti-tumor immune response. Herein, we elaborate potential mechanisms underlying immunotherapy resistance from a novel dimension of metabolic reprogramming in diverse tumor-infiltrating immunocytes, and related metabolic intervention in the hope of offering a reference for targeting metabolic vulnerabilities to circumvent immunotherapeutic resistance.


Assuntos
Neoplasias , Humanos , Neoplasias/patologia , Imunoterapia/métodos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico
15.
Inorg Chem ; 62(35): 14168-14179, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37606309

RESUMO

A lanthanide-based molecular crystalline material endows metal-organic frameworks (MOFs) with many fascinating applications such as fluorescence detection and CO2 chemical fixation. Herein, we describe and study a multipurpose europium(III) MOF with the formula of {[Eu2(TATAB)2]·2.5H2O·2DMF}n (Eu-MOF) (where H3TATAB is 4,4',4″-((1,3,5-triazine-2,4,6-triyl)tris(azanediyl))tribenzoic acid ligand) for photoluminescence sensor matrix and CO2 chemical fixation. This Eu-MOF features 1D square channels along the c direction with a pore size of ca.14.07 Å × 14.07 Å, occupied by lattice water and DMF molecules. The obtained Eu-MOF can achieve simultaneous luminescence of the H3TATAB ligand and Eu3+ ions, which can be developed as the sensor matrix for ratiometric fluorescence thermometry. The luminescence of the Eu-MOF demonstrates an obvious color change from red to yellow as temperature rises from 303 to 373 K and the Eu-MOF has a satisfying relative sensitivity of 3.21% K-1 and a small temperature uncertainty of 0.0093 K at 333 K. Moreover, sensitive detection of gossypol was achieved with a quenching constant Ksv of 1.18 × 105 M-1 and a detection limit of 4.61 µM. A combination of the competitive absorption and photoinduced electron transfer caused by host-guest interactions and strengthened π-π packing effect synergistically between gossypol molecules and the Eu-MOF skeleton realizes the "turn-off" sensing of gossypol. Importantly, the nature of the Eu-MOF allows showing CO2 chemical fixation under mild conditions. Thus, the Eu-MOF can be utilized as a multipurpose material for ratiometric fluorescence thermometry, quantitative gossypol detection, and CO2 chemical fixation.

16.
Nat Commun ; 14(1): 4889, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37604800

RESUMO

The improvement of non-oxide ceramic plasticity while maintaining the high-temperature strength is a great challenge through the classical strategy, which generally includes decreasing grain size to several nanometers or adding ductile binder phase. Here, we report that the plasticity of fully dense boron carbide (B4C) is greatly enhanced due to the boundary non-stoichiometry induced by high-pressure sintering technology. The effect decreases the plastic deformation temperature of B4C by 200 °C compared to that of conventionally-sintered specimens. Promoted grain boundary diffusion is found to enhance grain boundary sliding, which dominate the lower-temperature plasticity. In addition, the as-produced specimen maintains extraordinary strength before the occurrence of plasticity. The study provides an efficient strategy by boundary chemical change to facilitate the plasticity of ceramic materials.

17.
Adv Sci (Weinh) ; 10(29): e2304071, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37551998

RESUMO

The development of efficient and economical electrocatalysts for oxygen evolution reaction (OER) is of paramount importance for the sustainable production of renewable fuels and energy storage systems; however, the sluggish OER kinetics involving multistep four proton-coupled electron transfer hampers progress in these systems. Fortunately, surface reconstruction offers promising potential to improve OER catalyst design. Anion modulation plays a crucial role in controlling the extent of surface reconstruction and positively persuading the reconstructed species' performances. This review starts by providing a general explanation of how various types of anions can trigger dynamic surface reconstruction and create different combinations with pre-catalysts. Next, the influences of anion modulation on manipulating the surface dynamic reconstruction process are discussed based on the in situ advanced characterization techniques. Furthermore, various effects of survived anionic groups in reconstructed species on water oxidation activity are further discussed. Finally, the challenges and prospects for the future development directions of anion modulation for redirecting dynamic surface reconstruction to construct highly efficient and practical catalysts for water oxidation are proposed.

18.
Nat Commun ; 14(1): 4562, 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37507418

RESUMO

The spin degree of freedom is an important and intrinsic parameter in boosting carrier dynamics and surface reaction kinetics of photocatalysis. Here we show that chiral structure in ZnO can induce spin selectivity effect to promote photocatalytic performance. The ZnO crystals synthesized using chiral methionine molecules as symmetry-breaking agents show hierarchical chirality. Magnetic circular dichroism spectroscopic and magnetic conductive-probe atomic force microscopic measurements demonstrate that chiral structure acts as spin filters and induces spin polarization in photoinduced carriers. The polarized carriers not only possess the prolonged carrier lifetime, but also increase the triplet species instead of singlet byproducts during reaction. Accordingly, the left- and right-hand chiral ZnO exhibit 2.0- and 1.9-times higher activity in photocatalytic O2 production and 2.5- and 2.0-times higher activities in contaminant photodegradation, respectively, compared with achiral ZnO. This work provides a feasible strategy to manipulate the spin properties in metal oxides for electron spin-related redox catalysis.

19.
Nat Commun ; 14(1): 4127, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37438355

RESUMO

Surface reconstruction generates real active species in electrochemical conditions; rational regulating reconstruction in a targeted manner is the key for constructing highly active catalyst. Herein, we use the high-valence Mo modulated orthorhombic Pr3Ir1-xMoxO7 as model to activate lattice oxygen and cations, achieving directional and accelerated surface reconstruction to produce self-terminated Ir‒Obri‒Mo (Obri represents the bridge oxygen) active species that is highly active for acidic water oxidation. The doped Mo not only contributes to accelerated surface reconstruction due to optimized Ir‒O covalency and more prone dissolution of Pr, but also affords the improved durability resulted from Mo-buffered charge compensation, thereby preventing fierce Ir dissolution and excessive lattice oxygen loss. As such, Ir‒Obri‒Mo species could be directionally generated, in which the strong Brønsted acidity of Obri induced by remaining Mo assists with the facilitated deprotonation of oxo intermediates, following bridging-oxygen-assisted deprotonation pathway. Consequently, the optimal catalyst exhibits the best activity with an overpotential of 259 mV to reach 10 mA cmgeo-2, 50 mV lower than undoped counterpart, and shows improved stability for over 200 h. This work provides a strategy of directional surface reconstruction to constructing strong Brønsted acid sites in IrOx species, demonstrating the perspective of targeted electrocatalyst fabrication under in situ realistic reaction conditions.

20.
Bioorg Chem ; 139: 106710, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37418785

RESUMO

The pericarps of Trichosanthes kirilowii are often used to treat cough in traditional Chinese medicine, and its ethanol extract exhibited effective therapeutic effects on acute lung injury (ALI) in vivo caused by H1N1. An anticomplement activity-guided fractionation on the extract resulted in the isolation of ten new terpenoids, including seven monoterpenoids, trichosanates A-G (1-7), and three cucurbitane-type triterpenoids, cucurbitacins W-Y (8-10), as well as eleven known terpenoids (11-21). The new terpenoids' structures were determined by spectroscopic analysis, X-ray crystallographic analysis (1), electronic circular dichroism (ECD) analysis and calculations (2-10). Twelve monoterpenoids (1-7 and 11-15) and five cucurbitane-type triterpenoids (8-10, 18, and 20) exhibited anticomplement activity in vitro. For the monoterpenoids, the long aliphatic chain substituents might enhance their anticomplement activity. Additionally, two representative anticomplement terpenoids, 8 and 11, obviously attenuated H1N1-induced ALI in vivo by inhibiting complement overactivation and reducing inflammatory responses.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Trichosanthes , Triterpenos , Cucurbitacinas , Trichosanthes/química , Monoterpenos/farmacologia , Triterpenos/farmacologia , Triterpenos/química , Extratos Vegetais/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...