Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Org Chem ; 83(23): 14658-14666, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30395708

RESUMO

The reactivities and π-facial stereoselectivities of Diels-Alder reactions of 5-substituted cyclopentadienes were studied using density functional theory. Burnell and co-workers previously showed that the π-facial selectivities result from the energies required to distort the reactants into the transition state geometries. We have discovered the origins of these distortions. C5-X σ-donors predistort the cyclopentadiene into an envelope conformation that maximizes the stabilizing hyperconjugative interaction between the C5-X σ-bond and the diene π-system. This envelope conformation geometrically resembles the anti transition state. To minimize the destabilizing effect of negative hyperconjugation, C5-X σ-acceptors predistort in the opposite direction toward an envelope geometry that resembles the syn transition state. We now show how hyperconjugative effects of the C5-X substituent influence the stereoselectivities and have developed a unified model rationalizing the stereoselectivities and reactivities of 5-substituted cyclopentadiene Diels-Alder reactions.


Assuntos
Reação de Cicloadição , Ciclopentanos/química , Estrutura Molecular , Estereoisomerismo
2.
Chem Commun (Camb) ; 54(40): 5082-5085, 2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29707720

RESUMO

Halogen substituents increase sydnone cycloaddition reactivities substantially. Fluoro-sydnones are superior to bromo- and chloro-sydnones, and can achieve extremely high second-order rate constants with strained alkynes. Computational studies have revealed the fluorine substituent increases the reactivity of sydnone mainly by lowering its distortion energy.

3.
Org Lett ; 18(1): 32-5, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26670884

RESUMO

The rearrangements of 4-substituted bicyclo[2.2.2]oct-5-en-2-yl radicals, generated from the corresponding Diels-Alder adducts with phenylseleno acrylates by radical-induced reductive deselenocarbonylations, give the 2-substituted bicyclo[3.2.1]oct-6-en-2-yl radicals with some substituents, e.g., alkoxy and phenyl, but not for silyloxymethyl or benzyl substituents. Theoretical calculations with DFT give the thermodynamics of these reactions and the origins of these processes.

4.
J Comput Chem ; 37(1): 117-23, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26444427

RESUMO

Schleyer's discovery of hyperconjugative aromaticity and antiaromaticity in 5-substituted cyclopentadienes further expanded our understanding of the pervasive influence of aromaticity. Acceptors induce antiaromatic character by Schleyer's negative hyperconjugative aromaticity, and donors have the opposite effect. We computationally explored the Diels-Alder reactivity of 5-substituted cyclopentadienes with ethylene and maleic anhydride. The predicted billionfold difference in the computed gas phase rate constants at room temperature for the Diels-Alder reactions of 5-substituted cyclopentadienes with ethylene or maleic anhydride results from differences in the transition state distortion energies, which are directly related to the hyperconjugative aromaticity of these molecules.

5.
Angew Chem Int Ed Engl ; 53(45): 12091-6, 2014 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-25244630

RESUMO

Physicochemical properties constitute a key factor for the success of a drug candidate. Whereas many strategies to improve the physicochemical properties of small heterocycle-type leads exist, complex hydrocarbon skeletons are more challenging to derivatize because of the absence of functional groups. A variety of C-H oxidation methods have been explored on the betulin skeleton to improve the solubility of this very bioactive, yet poorly water-soluble, natural product. Capitalizing on the innate reactivity of the molecule, as well as the few molecular handles present on the core, allowed oxidations at different positions across the pentacyclic structure. Enzymatic oxidations afforded several orthogonal oxidations to chemical methods. Solubility measurements showed an enhancement for many of the synthesized compounds.


Assuntos
Carbono/química , Hidrogênio/química , Produtos Biológicos/química , Oxirredução , Solubilidade
6.
J Am Chem Soc ; 136(35): 12249-52, 2014 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-25126836

RESUMO

A highly enantioselective catalytic protocol for the desymmetrization of a wide variety of 2-substituted and 2,2-disubstituted 1,3-diols is reported. This reaction proceeds through the formation of an "ortho ester" intermediate via oxidation of 1,3-diol benzylidene acetal by dimethyldioxirane (DMDO) and the subsequent proton transfer catalyzed by chiral phosphoric acid (CPA). The mechanism and origins of enantioselectivity of this reaction are identified using DFT calculations. The oxidation by DMDO is rate-determining, and the phosphoric acid significantly accelerates the proton transfer; the attractive interactions between the benzylidene part of the substrate and the 2,4,6-triisopropyl group of CPA are the key to high enantioselectivity.

7.
J Am Chem Soc ; 136(18): 6733-43, 2014 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-24731019

RESUMO

The mechanism of C-H activation at metathesis-relevant ruthenium(II) benzylidene complexes was studied both experimentally and computationally. Synthesis of a ruthenium dicarboxylate at a low temperature allowed for direct observation of the C-H activation step, independent of the initial anionic ligand-exchange reactions. A first-order reaction supports an intramolecular concerted metalation-deprotonation mechanism with ΔG(‡)(298K) = 22.2 ± 0.1 kcal·mol(-1) for the parent N-adamantyl-N'-mesityl complex. An experimentally determined ΔS(‡) = -5.2 ± 2.6 eu supports a highly ordered transition state for carboxylate-assisted C(sp(3))-H activation. Experimental results, including measurement of a large primary kinetic isotope effect (k(H)/k(D) = 8.1 ± 1.7), agree closely with a computed six-membered carboxylate-assisted C-H activation mechanism where the deprotonating carboxylate adopts a pseudo-apical geometry, displacing the aryl ether chelate. The rate of cyclometalation was found to be influenced by both the electronics of the assisting carboxylate and the ruthenium ligand environment.


Assuntos
Alcenos/química , Ácidos Carboxílicos/química , Compostos de Rutênio/química
8.
J Am Chem Soc ; 135(40): 14996-5007, 2013 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-24028424

RESUMO

Enantioselective conjugate additions of arylboronic acids to ß-substituted cyclic enones have been previously reported from our laboratories. Air- and moisture-tolerant conditions were achieved with a catalyst derived in situ from palladium(II) trifluoroacetate and the chiral ligand (S)-t-BuPyOx. We now report a combined experimental and computational investigation on the mechanism, the nature of the active catalyst, the origins of the enantioselectivity, and the stereoelectronic effects of the ligand and the substrates of this transformation. Enantioselectivity is controlled primarily by steric repulsions between the t-Bu group of the chiral ligand and the α-methylene hydrogens of the enone substrate in the enantiodetermining carbopalladation step. Computations indicate that the reaction occurs via formation of a cationic arylpalladium(II) species, and subsequent carbopalladation of the enone olefin forms the key carbon-carbon bond. Studies of nonlinear effects and stoichiometric and catalytic reactions of isolated (PyOx)Pd(Ph)I complexes show that a monomeric arylpalladium-ligand complex is the active species in the selectivity-determining step. The addition of water and ammonium hexafluorophosphate synergistically increases the rate of the reaction, corroborating the hypothesis that a cationic palladium species is involved in the reaction pathway. These additives also allow the reaction to be performed at 40 °C and facilitate an expanded substrate scope.


Assuntos
Ácidos Borônicos/química , Cetonas/química , Modelos Moleculares , Paládio/química , Catálise , Cinética , Conformação Molecular , Sais/química , Estereoisomerismo , Especificidade por Substrato , Água/química
9.
J Org Chem ; 78(8): 4037-48, 2013 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-23461537

RESUMO

The site selectivities and stereoselectivities of C-H oxidations of substituted cyclohexanes and trans-decalins by dimethyldioxirane (DMDO) were investigated computationally with quantum mechanical density functional theory (DFT). The multiconfiguration CASPT2 method was employed on model systems to establish the preferred mechanism and transition state geometry. The reaction pathway involving a rebound step is established to account for the retention of stereochemistry. The oxidation of sclareolide with dioxirane reagents is reported, including the oxidation by the in situ generated tBu-TFDO, a new dioxirane that better discriminates between C-H bonds on the basis of steric effects. The release of 1,3-diaxial strain in the transition state contributes to the site selectivity and enhanced equatorial C-H bond reactivity for tertiary C-H bonds, a result of the lowering of distortion energy. In addition to this strain release factor, steric and inductive effects contribute to the rates of C-H oxidation by dioxiranes.


Assuntos
Compostos de Epóxi/química , Ligação de Hidrogênio , Modelos Químicos , Oxirredução , Teoria Quântica
10.
Synlett ; 23(19): 2768-2772, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23585710

RESUMO

The tricalysiolides are a recently isolated class of diterpene natural products featuring the carbon backbone of the well-known coffee extract, cafestol. Herein we validate the use of our non-heme iron complex, Fe(PDP), as an oxidative tailoring enzyme mimic to test the proposal that this class of natural products derives from cafestol via cytochrome P-450-mediated furan oxidation. Thereafter, as predicted by computational analysis, C-H oxidation derivatization studies provided a novel 2° alcohol product as a single diastereomer.

11.
J Phys Chem A ; 115(47): 13906-20, 2011 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-21967148

RESUMO

Theoretical calculations were performed on the 1,3-dipolar cycloaddition reactions of 24 1,3-dipoles with ethylene and acetylene. The 24 1,3-dipoles are of the formula X≡Y(+)-Z(-) (where X is HC or N, Y is N, and Z is CH(2), NH, or O) or X═Y(+)-Z(-) (where X and Z are CH(2), NH, or O and Y is NH, O, or S). The high-accuracy G3B3 method was employed as the reference. CBS-QB3, CCSD(T)//B3LYP, SCS-MP2//B3LYP, B3LYP, M06-2X, and B97-D methods were benchmarked to assess their accuracies and to determine an accurate method that is practical for large systems. Several basis sets were also evaluated. Compared to the G3B3 method, CBS-QB3 and CCSD(T)/maug-cc-pV(T+d)Z//B3LYP methods give similar results for both activation and reaction enthalpies (mean average deviation, MAD, < 1.5 kcal/mol). SCS-MP2//B3LYP and M06-2X give small errors for the activation enthalpies (MAD < 1.5 kcal/mol), while B3LYP has MAD = 2.3 kcal/mol. SCS-MP2//B3LYP and B3LYP give the reasonable reaction enthalpies (MAD < 5.0 kcal/mol). The B3LYP functional also gives good results for most 1,3-dipoles (MAD = 1.9 kcal/mol for 17 common 1,3-dipoles), but the activation and reaction enthalpies for ozone and sulfur dioxide are difficult to calculate by any of the density functional methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...