Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(17)2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39275540

RESUMO

The combination of the dark fiber in existing Optical Fiber Composite Overhead Ground Wire (OPGW) with Distributed Optical Fiber Sensing (DOFS) technology can be used to enable online monitoring and provide early warnings of anomalies in high-voltage transmission lines. Accurate mapping of the optical cable length to the geographic coordinates of actual towers is a key factor in achieving this goal. This paper discusses the principle of using a DOFS system for transmission line tower positioning and presents four available positioning features. To overcome the limitations of single physical parameter positioning, this paper presents a self-developed hybrid DOFS that simultaneously captures Rayleigh backscattering and Brillouin scattering signals. Several physical parameters, including temperature, strain, and vibration, are acquired synchronously. Through hybrid multi-parameter analysis, the rapid and accurate positioning of OPGW line towers is achieved. Experimental results have shown that the proposed method, based on the hybrid DOFS system, can locate up to 82 towers, while the traditional method could only identify 12. The hybrid system was able to complete 80% of the tension towers in 40 h. This paper presents a novel multi-parameter localization method that has the potential to significantly improve the efficiency and reliability of grid operation and maintenance.

2.
Opt Express ; 30(17): 30312-30330, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36242138

RESUMO

A newly designed phase-locked (PL) Φ-OTDR system was proposed and instrumented. Field tests of water impact, anchor damage towing and tide diagnosing were carried out in a natural freshwater lake as well as the East China Sea. Personnel movement trajectory monitoring and ship flow monitoring were carried out by a buried cable along the floodplain of the Yangtze River. It proved that the proposed system can monitor the real-time status and sense the surrounding environment of existing underwater communication cables, which could be helpful for the maintenance of the cable itself as well as underwater information collection.

3.
Opt Express ; 29(9): 13115-13128, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33985053

RESUMO

A submarine cable monitoring system based on enhanced coherent optical time-domain reflectometry (E-COTDR) is realized. An improved optimal peak-seeking (OPS) based I/Q demodulation method is employed for simultaneous loss measurement and vibration monitoring. A single-end diagnosis range over 74km is achieved for the proposed E-COTDR, enabling the double-end cooperative system to have a single-span of 148km. For the multi-span cascaded cables over 1000km, the loss and vibration monitoring without fading zone is carried out for a single-span of 121km. The proposed system provides a reliable technical option for the next generation underwater cable monitoring applications.

4.
Nat Chem ; 11(8): 687-694, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31285541

RESUMO

Super-resolved fluorescence microscopy techniques have enabled substantial advances in the chemical and biological sciences. However, they can only interrogate entities that fluoresce, and most chemical or biological processes do not involve fluorescent species. Here we report a competition-enabled imaging technique with super-resolution (COMPEITS) that enables quantitative super-resolution imaging of non-fluorescent processes. It is based on the incorporation of competition into a single-molecule fluorescence-detection scheme. We demonstrate COMPEITS by investigating a photoelectrocatalytic reaction; we map, with nanometre precision, a non-fluorescent surface reaction that is important for water decontamination on single photocatalyst particles. The subparticle-level quantitative information of reactant adsorption affinities unambiguously decouples size- and shape-scaling laws on specific particle facets and uncovers a surprising biphasic shape dependence, leading to catalyst design principles for optimal reactant adsorption efficacy. With its ability to provide spatially resolved information on the behaviours of unlabelled, non-fluorescent entities under operando conditions, COMPEITS could interrogate a variety of surface processes in fields ranging from heterogeneous catalysis and materials engineering to nanotechnology and energy sciences.


Assuntos
Imagem Óptica/métodos , Imagem Óptica/normas , Adsorção , Corantes Fluorescentes , Microscopia de Fluorescência , Nanotecnologia , Tamanho da Partícula , Propriedades de Superfície
5.
Opt Lett ; 44(1): 53-56, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30645546

RESUMO

We report an integrated optofluidic micro-pump with a pair of mirrored stirrers of circulating micro-beads in a micro-channel, driven by plasmon-assisted optical manipulation with the excitation of a polarization rotating beam. H-shaped apertures (HSAs) on a gold surface produce strong near-field hot spots when they are illuminated with a light beam polarized parallel to the long axis of "H." With the rotating of excitation polarization, loops of HSAs with gradually varied orientations can produce the circulation of hot spots, which can further trap micro-beads and make them go around in circles. A different sequence of HSAs can produce a different direction and phase of bead rotation, even under uniform excitation. A pair of mirrored circulations of micro-beads in a micro-channel can induce very effective directional flow. Through numerical modeling, we find that a group of non-synchronized multi-phase mirrored circulations can produce a very uniform flow rate with a speed of more than 10 micrometers per second. These micro-pumps can be heavily integrated and activated by a single beam, while the flow direction of each pump can be regulated, even under a uniform excitation. Our design proposes a new approach for the flow pumping in micro- and nanofluidic devices.

6.
Opt Lett ; 43(16): 3901-3904, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-30106912

RESUMO

Based on the balance between the scattering force and the trapping force of an evanescent field of a standing wave on silicon waveguides, we propose a structure for controllable trapping and releasing of nanoparticles, which can act as pause operation for nanoparticle flow control. The design is realized by the cascade of an optical switch with a structure of a ring-assisted Mach-Zehnder interferometer (RAMZI) and a Sagnac loop reflector which connects to one output of the switch. Through thermal tuning, with a tiny refractive index change of 4.3×10-4 on a ring resonator, the output of a RAMZI can be switched between two ports. As for the release state of the nanoparticle flow, the light is guided to the port without a reflector. There is no standing wave or traps formed on a waveguide. Therefore, the scattering force dominates, which drives particles moving forward to output ports. Otherwise, for trapping a state, the light will be reflected by the Sagnac loop and form a stationary standing wave which provides an array of traps for nanoparticles. Most importantly, the structure can switch its state to trap or sequentially release particles without losing the control of samples which, to the best of our knowledge, has not been realized before. With the statistical description of particle motion, the balance between trapping and releasing is distinguished by the trapping time and tuned by reflectance. The feasibility of our design is verified using the three-dimensional finite-difference time domain and Maxwell stress tensor methods. Our structure possesses the merits of high compactness and time effectiveness and, thereby, it is highly suitable for on-chip optical manipulation of nanoparticle flow control, which brings great potential in integrated on-chip optofluidics.

7.
ACS Nano ; 12(6): 5570-5579, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29860829

RESUMO

Surface-plasmon (SP) enhanced catalysis on plasmonic nanostructures brings opportunities to increase catalytic efficiency and alter catalytic selectivity. Understanding the underlying mechanism requires quantitative measurements of catalytic enhancement on these nanostructures, whose intrinsic structural heterogeneity presents experimental challenges. Using correlated super-resolution fluorescence microscopy and electron microscopy, here we report a quantitative visualization of SP-enhanced catalytic activity at the nanoscale within single plasmonic nanostructures. We focus on two Au- and Ag-based linked nanostructures that present plasmonic hotspots at nanoscale gaps. Spatially localized higher reaction rates at these gaps vs nongap regions report the SP-induced catalytic enhancements, which show direct correlations with the nanostructure geometries and local electric field enhancements. Furthermore, the catalytic enhancement scales quadratically with the local actual light intensity, attributable to hot electron involvement in the catalytic enhancement mechanism. These discoveries highlight the effectiveness of correlated super-resolution and electron microscopy in interrogating nanoscale catalytic properties.

8.
Opt Lett ; 43(7): 1602-1605, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29601040

RESUMO

In this Letter, we report on a plasmonic nano-ellipse metasurface with the purpose of trapping and two-dimensional (2D) arbitrary transport of nanoparticles by means of rotating the polarization of an excitation beam. The locations of hot spots within a metasurface are polarization dependent, thus making it possible to turn on/off the adjacent hot spots and then convey the trapped target by rotating the incident polarization state. For the case of a metasurface with a unit cell of perpendicularly orientated nano-ellipses, the hot spots with higher intensities are located at both apexes of the nano-ellipse whose major axis is parallel to the direction of polarization. When the polarization gradually rotates to its counterpart direction, the trapped particle may move around the ellipse and transfer to the most adjacent ellipse, due to the unbalanced trap potentials around the nano-ellipse. Clockwise and counterclockwise rotation would guide the particle in a different direction, which makes it possible to convey the particle arbitrarily within the plasmonic metasurface by setting a time sequence of polarization rotation. As confirmed by the three-dimensional finite-difference time-domain analysis, our design offers a novel scheme of 2D arbitrary transport with nanometer accuracy, which could be used in many on-chip optofluidic applications.

9.
Nat Chem ; 10(6): 607-614, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29581485

RESUMO

Enzymes often show catalytic allostery in which reactions occurring at different sites communicate cooperatively over distances of up to a few nanometres. Whether such effects can occur with non-biological nanocatalysts remains unclear, even though these nanocatalysts can undergo restructuring and molecules can diffuse over catalyst surfaces. Here we report that phenomenologically similar, but mechanistically distinct, cooperative effects indeed exist for nanocatalysts. Using spatiotemporally resolved single-molecule catalysis imaging, we find that catalytic reactions on a single Pd or Au nanocatalyst can communicate with each other, probably via hopping of positively charged holes on the catalyst surface, over ~102 nanometres and with a temporal memory of ~101 to 102 seconds, giving rise to positive cooperativity among its surface active sites. Similar communication is also observed between individual nanocatalysts, however it operates via a molecular diffusion mechanism involving negatively charged product molecules, and its communication distance is many micrometres. Generalization of these long-range intra- and interparticle catalytic communication mechanisms may introduce a novel conceptual framework for understanding nanoscale catalysis.

10.
ACS Cent Sci ; 3(11): 1189-1197, 2017 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-29202021

RESUMO

Compared with their monometallic counterparts, bimetallic nanoparticles often show enhanced catalytic activity associated with the bimetallic interface. Direct quantitation of catalytic activity at the bimetallic interface is important for understanding the enhancement mechanism, but challenging experimentally. Here using single-molecule super-resolution catalysis imaging in correlation with electron microscopy, we report the first quantitative visualization of enhanced bimetallic activity within single bimetallic nanoparticles. We focus on heteronuclear bimetallic PdAu nanoparticles that present a well-defined Pd-Au bimetallic interface in catalyzing a photodriven fluorogenic disproportionation reaction. Our approach also enables a direct comparison between the bimetallic and monometallic regions within the same nanoparticle. Theoretical calculations further provide insights into the electronic nature of N-O bond activation of the reactant (resazurin) adsorbed on bimetallic sites. Subparticle activity correlation between bimetallic enhancement and monometallic activity suggests that the favorable locations to construct bimetallic sites are those monometallic sites with higher activity, leading to a strategy for making effective bimetallic nanocatalysts. The results highlight the power of super-resolution catalysis imaging in gaining insights that could help improve nanocatalysts.

11.
Opt Lett ; 42(2): 259-262, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-28081087

RESUMO

We report a nano-optical conveyor belt containing an array of gold plasmonic non-concentric nanorings (PNNRs) for the realization of trapping and unidirectional transportation of nanoparticles through rotating the polarization of an excitation beam. The location of hot spots within an asymmetric plasmonic nanostructure is polarization dependent, thus making it possible to manipulate a trapped target by rotating the incident polarization state. In the case of PNNR, the two poles have highly unbalanced trap potential. This greatly enhances the chance of transferring trapped particles between adjacent PNNRs in a given direction through rotating the polarization. As confirmed by three-dimensional finite-difference time-domain analysis, an array of PNNRs forms an unidirectional nano-optical conveyor belt, which delivers target nanoparticles or biomolecules over a long distance with nanometer accuracy. With the capacity to trap and to transfer, our design offers a versatile scheme for conducting mechanical sample manipulation in many on-chip optofluidic applications.

12.
Opt Lett ; 41(3): 528-31, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26907415

RESUMO

We propose a plasmonic nano-optical conveyor belt for peristaltic transport of nano-particles. Instead of illumination from the top, waveguide-coupled excitation is used for trapping particles with a higher degree of precision and flexibility. Graded nano-rods with individual dimensions coded to have resonance at specific wavelengths are incorporated along the waveguide in order to produce spatially addressable hot spots. Consequently, by switching the excitation wavelength sequentially, particles can be transported to adjacent optical traps along the waveguide. The feasibility of this design is analyzed using three-dimensional finite-difference time-domain and Maxwell stress tensor methods. Simulation results show that this system is capable of exciting addressable traps and moving particles in a peristaltic fashion with tens of nanometers resolution. It is the first, to the best of our knowledge, report about a nano-optical conveyor belt with waveguide-coupled excitation, which is very important for scalability and on-chip integration. The proposed approach offers a new design direction for integrated waveguide-based optical manipulation devices and its application in large scale lab-on-a-chip integration.


Assuntos
Nanotecnologia/instrumentação , Dispositivos Ópticos , Desenho de Equipamento , Estudos de Viabilidade , Pinças Ópticas
13.
Nature ; 530(7588): 77-80, 2016 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-26842056

RESUMO

The splitting of water photoelectrochemically into hydrogen and oxygen represents a promising technology for converting solar energy to fuel. The main challenge is to ensure that photogenerated holes efficiently oxidize water, which generally requires modification of the photoanode with an oxygen evolution catalyst (OEC) to increase the photocurrent and reduce the onset potential. However, because excess OEC material can hinder light absorption and decrease photoanode performance, its deposition needs to be carefully controlled--yet it is unclear which semiconductor surface sites give optimal improvement if targeted for OEC deposition, and whether sites catalysing water oxidation also contribute to competing charge-carrier recombination with photogenerated electrons. Surface heterogeneity exacerbates these uncertainties, especially for nanostructured photoanodes benefiting from small charge-carrier transport distances. Here we use super-resolution imaging, operated in a charge-carrier-selective manner and with a spatiotemporal resolution of approximately 30 nanometres and 15 milliseconds, to map both the electron- and hole-driven photoelectrocatalytic activities on single titanium oxide nanorods. We then map, with sub-particle resolution (about 390 nanometres), the photocurrent associated with water oxidation, and find that the most active sites for water oxidation are also the most important sites for charge-carrier recombination. Site-selective deposition of an OEC, guided by the activity maps, improves the overall performance of a given nanorod--even though more improvement in photocurrent efficiency correlates with less reduction in onset potential (and vice versa) at the sub-particle level. Moreover, the optimal catalyst deposition sites for photocurrent enhancement are the lower-activity sites, and for onset potential reduction the optimal sites are the sites with more positive onset potential, contrary to what is obtainable under typical deposition conditions. These findings allow us to suggest an activity-based strategy for rationally engineering catalyst-improved photoelectrodes, which should be widely applicable because our measurements can be performed for many different semiconductor and catalyst materials.

14.
Chem Soc Rev ; 43(4): 1107-17, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24045786

RESUMO

This review discusses the latest advances in using single-molecule microscopy of fluorogenic reactions to examine and understand the spatiotemporal catalytic behaviors of single metal nanoparticles of various shapes including pseudospheres, nanorods, and nanoplates. Real-time single-turnover kinetics reveal size-, catalysis-, and metal-dependent temporal activity fluctuations of single pseudospherical nanoparticles (<20 nm in diameter). These temporal catalytic dynamics can be related to nanoparticles' dynamic surface restructuring whose timescales and energetics can be quantified. Single-molecule super-resolution catalysis imaging further enables the direct quantification of catalytic activities at different surface sites (i.e., ends vs. sides, or corner, edge vs. facet regions) on single pseudo 1-D and 2-D nanocrystals, and uncovers linear and radial activity gradients within the same surface facets. These spatial activity patterns within single nanocrystals can be attributed to the inhomogeneous distributions of low-coordination surface sites, including corner, edge, and defect sites, among which the distribution of defect sites is correlated with the nanocrystals' morphology and growth mechanisms. A brief discussion is given on the extension of the single-molecule imaging approach to catalysis that does not involve fluorescent molecules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA