Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 153: 109849, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39173981

RESUMO

Galectin-8 (Gal-8) is a versatile carbohydrate-binding protein with pivotal roles in immune regulation and cellular processes. This study introduces a novel galectin-8 protein, LcGal-8, from the large yellow croaker (Larimichthys crocea), showcasing typical characteristics of tandem-repeat-type galectins, including the absence of a signal peptide or transmembrane region and the presence of conserved sugar-binding motifs. Phylogenetic analysis reveals its conservation among fish species. Expression profiling indicates widespread distribution in immune tissues, particularly the spleen, implicating involvement in immune processes. The subcellular localization analysis reveals that LcGal-8 is present in both the cytoplasm and nucleus. Upon bacterial challenge, LcGal-8 is up-regulated in immune tissues, suggesting a role in host defense. Functional assays demonstrate that LcGal-8 can agglutinate gram-negative bacteria. The recombinant LcGal-8 protein agglutinates red blood cells from the large yellow croaker independently of Ca2⁺, however, this activity is inhibited by lipopolysaccharide (LPS) at 2.5 µg/mL. Fluorescence detection kits and scanning electron microscopy (SEM) confirm the agglutination and bactericidal effects of LcGal-8 against various gram-negative bacteria, including Vibrio harveyi, Aeromondaceae hydrophila, Aeromondaceae veronii, Pseudomonas plecoglossicida, Edwardsiella tarda. These findings contribute valuable insights into the genetic basis of disease resistance in the large yellow croaker and could support molecular breeding strategies to enhance disease resistance.


Assuntos
Doenças dos Peixes , Proteínas de Peixes , Galectinas , Imunidade Inata , Perciformes , Animais , Sequência de Aminoácidos , Doenças dos Peixes/imunologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Proteínas de Peixes/química , Galectinas/genética , Galectinas/imunologia , Galectinas/química , Perfilação da Expressão Gênica/veterinária , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Perciformes/imunologia , Perciformes/genética , Filogenia , Alinhamento de Sequência/veterinária
2.
Adv Sci (Weinh) ; : e2402285, 2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39033542

RESUMO

Regulatory cell death is an important way to eliminate the DNA damage that accompanies the rapid proliferation of neural stem cells during cortical development, including pyroptosis, apoptosis, and so on. Here, the study reports that the absence of GSDMD-mediated pyroptosis results in defective DNA damage sensor pathways accompanied by aberrant neurogenesis and autism-like behaviors in adult mice. Furthermore, GSDMD is involved in organizing the mitochondrial electron transport chain by regulating the AMPK/PGC-1α pathway to target Aifm3. This process promotes a switch from oxidative phosphorylation to glycolysis. The perturbation of metabolic homeostasis in neural progenitor cells increases lactate production which acts as a signaling molecule to regulate the p38MAPK pathway. And activates NF-𝜿B transcription to disrupt cortex development. This abnormal proliferation of neural progenitor cells can be rescued by inhibiting glycolysis and lactate production. Taken together, the study proposes a metabolic axis regulated by GSDMD that links pyroptosis with metabolic reprogramming. It provides a flexible perspective for the treatment of neurological disorders caused by genotoxic stress and neurodevelopmental disorders such as autism.

3.
Dev Cell ; 59(1): 64-78.e5, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38103552

RESUMO

Mammalian neocortex formation follows a stereotypical pattern wherein the self-renew and differentiation of neural stem cells are coordinated with diverse organelle dynamics. However, the role of lysosomes in brain development has long been overlooked. Here, we demonstrate the highly dynamic lysosomal quantities, types, and localizations in developing brain. We observed asymmetric endolysosome inheritance during radial glial cell (RGC) division and the increased autolysosomes within intermediate progenitor cells (IPs) and newborn neurons. Disruption of lysosomal function shortens the S phase of the cell cycle and promotes RGC differentiation. Mechanistically, we revealed a post-transcriptional regulation governing ribosome homeostasis and cell-cycle progression through differential lysosomal activity modulation. In the human forebrain organoid, lysosomal dynamics are conserved; specifically, during the mitosis of outer subventricular zone RGCs (oRGs), lysosomes are inherited by the progeny without basal process. Together, our results identify the critical role of lysosomal dynamics in regulating mouse and human brain development.


Assuntos
Neocórtex , Células-Tronco Neurais , Animais , Camundongos , Humanos , Neurônios/metabolismo , Neurogênese/fisiologia , Mitose , Neocórtex/metabolismo , Mamíferos , Lisossomos
4.
Trends Cell Biol ; 30(11): 869-880, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33011018

RESUMO

During embryonic brain development, neurogenesis requires the orchestration of gene expression to regulate neural stem cell (NSC) fate specification. Epigenetic regulation with specific emphasis on the modes of histone variants and histone post-translational modifications are involved in interactive gene regulation of central nervous system (CNS) development. Here, we provide a broad overview of the regulatory system of histone variants and histone modifications that have been linked to neurogenesis and diseases. We also review the crosstalk between different histone modifications and discuss how the 3D genome affects cell fate dynamics during brain development. Understanding the mechanisms of epigenetic regulation in neurogenesis has shifted the paradigm from single gene regulation to synergistic interactions to ensure healthy embryonic neurogenesis.


Assuntos
Histonas/metabolismo , Neurogênese , Processamento de Proteína Pós-Traducional , Animais , Epigênese Genética , Humanos , Neurogênese/genética
5.
Sci Rep ; 10(1): 12435, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32709945

RESUMO

Hydrocephalus is a brain disorder triggered by cerebrospinal fluid accumulation in brain cavities. Even though cerebrospinal fluid flow is known to be driven by the orchestrated beating of the bundled motile cilia of ependymal cells, little is known about the mechanism of ciliary motility. RSPH9 is increasingly becoming recognized as a vital component of radial spokes in ciliary "9 + 2" ultrastructure organization. Here, we show that deletion of the Rsph9 gene leads to the development of hydrocephalus in the early postnatal period. However, the neurodevelopment and astrocyte development are normal in embryonic Rsph9-/- mice. The tubular structure of the central aqueduct was comparable in Rsph9-/- mice. Using high-speed video microscopy, we visualized lower beating amplitude and irregular rotation beating pattern of cilia bundles in Rsph9-/- mice compared with that of wild-type mice. And the centriolar patch size was significantly increased in Rsph9-/- cells. TEM results showed that deletion of Rsph9 causes little impact in ciliary axonemal organization but the Rsph9-/- cilia frequently had abnormal ectopic ciliary membrane inclusions. In addition, hydrocephalus in Rsph9-/- mice results in the development of astrogliosis, microgliosis and cerebrovascular abnormalities. Eventually, the ependymal cells sloughed off of the lateral wall. Our results collectively suggested that RSPH9 is essential for ciliary structure and motility of mouse ependymal cilia, and its deletion causes the pathogenesis of hydrocephalus.


Assuntos
Cílios/patologia , Proteínas do Citoesqueleto/genética , Epêndima/crescimento & desenvolvimento , Hidrocefalia/genética , Animais , Animais Recém-Nascidos , Axonema/ultraestrutura , Cílios/metabolismo , Cílios/ultraestrutura , Proteínas do Citoesqueleto/metabolismo , Modelos Animais de Doenças , Epêndima/citologia , Epêndima/patologia , Epêndima/ultraestrutura , Feminino , Humanos , Hidrocefalia/congênito , Hidrocefalia/patologia , Microscopia Intravital , Masculino , Camundongos , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Microscopia de Vídeo
6.
Stem Cells ; 35(6): 1479-1492, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28276603

RESUMO

Mitochondrial metabolism is a fundamental process in tissue development. How this process play functions in embryonic neurogenesis remains largely unknown. Here, we show that mitochondrial uncoupling protein 2 (UCP2) regulates the embryonic neurogenesis by inhibiting the production of reactive oxygen species (ROS), which affect the proliferation of progenitors. In the embryonic brains of UCP2 knockdown or condition knockout mice, the proliferation of progenitors is significantly increased, while the differentiation of progenitors is reduced. Furthermore, we identify that Yap is the response protein of UCP2-mediated ROS production. When UCP2 is inactive, the production of ROS is increased. The amount of Yap protein is increased as Yap degradation through ubiquitin-proteasome proteolytic pathway is decreased. The defect caused by UCP2 depression can be rescued by Yap downregulation. Collectively, our results demonstrate that UCP2 regulates embryonic neurogenesis through ROS-mediated Yap alternation, thus shedding new sight on mitochondrial metabolism involved in embryonic neurogenesis. Stem Cells 2017;35:1479-1492.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neocórtex/embriologia , Neocórtex/metabolismo , Neurogênese , Fosfoproteínas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteína Desacopladora 2/metabolismo , Animais , Ciclo Celular , Proteínas de Ciclo Celular , Diferenciação Celular , Proliferação de Células , Regulação para Baixo , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Camundongos , Modelos Biológicos , Neurônios/citologia , Transporte Proteico , Frações Subcelulares/metabolismo , Proteínas de Sinalização YAP
7.
Fish Shellfish Immunol ; 26(6): 864-70, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19344770

RESUMO

Large yellow croaker (Pseudosciaena crocea) is one of the most important marine cultured fish in China. Acidic extracts of five tissues of large yellow croaker showed strong anti-Vibrio alginolyticus activity. Acidic extract of head kidney tissue was subjected to heat-treatment in boiling water, and solid-phase extraction on Sep-Pak C(18) cartridge. It was found that the antibacterial substances were heat stable, and 20% acetonitrile effluent exhibited strong antibacterial activity. Active extract was further applied to Sephadex G-25 gel permeation chromatography and StableBond C(18) RP-HPLC. An antibacterial peptide with a single peak was obtained. The results of amino acid sequencing and MALDI-TOF MS suggested that the peptide was RCRFCCRCCPRMRGCGICCRF with an observed molecular mass of 2523.2 Da. BLAST searching suggested that the purified antibacterial peptide was the mature peptide section of the hepcidin preproprotein presumed from cDNA of large yellow croaker, thus designated hepcidin-Pl. Hepcidin-P1 exhibited strong antibacterial activity against four marine vibrios.


Assuntos
Antibacterianos/isolamento & purificação , Peptídeos Catiônicos Antimicrobianos/isolamento & purificação , Perciformes/imunologia , Sequência de Aminoácidos , Animais , Antibacterianos/imunologia , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/imunologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Cromatografia em Gel/veterinária , Cromatografia Líquida de Alta Pressão/veterinária , Hepcidinas , Testes de Sensibilidade Microbiana/veterinária , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência , Extração em Fase Sólida/veterinária , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA