Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 20(8): e2305607, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37817357

RESUMO

The molecule-electrode coupling plays an essential role in photoresponsive devices with photochromic molecules, and the strong coupling between the molecule and the conventional electrodes leads to/ the quenching effect and limits the reversibility of molecular photoswitches. In this work, we developed a strategy of using transition metal dichalcogenides (TMDCs) electrodes to fabricate the thiol azobenzene (TAB) self-assembled monolayers (SAMs) junctions with the eutectic gallium-indium (EGaIn) technique. The current-voltage characteristics of the EGaIn/GaOx //TAB/TMDCs photoswitches showed an almost 100% reversible photoswitching behavior, which increased by ∼28% compared to EGaIn/GaOx //TAB/AuTS photoswitches. Density functional theory (DFT) calculations showed the coupling strength of the TAB-TMDCs electrode decreased by 42% compared to that of the TAB-AuTS electrode, giving rise to improved reversibility. our work demonstrated the feasibility of 2D TMDCs for fabricating SAMs-based photoswitches with unprecedentedly high reversibility.

2.
Chem Sci ; 14(22): 6079-6086, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37293661

RESUMO

The nitrogen doping of graphene leads to graphene heterojunctions with a tunable bandgap, suitable for electronic, electrochemical, and sensing applications. However, the microscopic nature and charge transport properties of atomic-level nitrogen-doped graphene are still unknown, mainly due to the multiple doping sites with topological diversities. In this work, we fabricated atomically well-defined N-doped graphene heterojunctions and investigated the cross-plane transport through these heterojunctions to reveal the effects of doping on their electronic properties. We found that a different doping number of nitrogen atoms leads to a conductance difference of up to ∼288%, and the conductance of graphene heterojunctions with nitrogen-doping at different positions in the conjugated framework can also lead to a conductance difference of ∼170%. Combined ultraviolet photoelectron spectroscopy measurements and theoretical calculations reveal that the insertion of nitrogen atoms into the conjugation framework significantly stabilizes the frontier molecular orbitals, leading to a change in the relative positions of the HOMO and LUMO to the Fermi level of the electrodes. Our work provides a unique insight into the role of nitrogen doping in the charge transport through graphene heterojunctions and materials at the single atomic level.

3.
Sci Adv ; 9(6): eadf0425, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36753541

RESUMO

Single-molecule electronics offer a unique strategy for the miniaturization of electronic devices. However, the existing experiments are limited to the conventional molecular junctions, where a molecule anchors to the electrode pair with linkers. With such a rod-like configuration, the minimum size of the device is defined by the length of the molecule. Here, by incorporating a single molecule with two single-layer graphene electrodes, we fabricated layer-by-layer single-molecule heterojunctions called single-molecule two-dimensional van der Waals heterojunctions (M-2D-vdWHs), of which the sizes are defined by the thickness of the molecule. We controlled the conformation of the M-2D-vdWHs and the cross-plane charge transport through them with the applied electric field and established that they can serve as reversible switches. Our results demonstrate that the M-2D-vdWHs, as stacked from single-layer 2D materials and a single molecule, can respond to electric field stimulus, which promises a diverse class of single-molecule devices with unprecedented size.

4.
Comput Math Methods Med ; 2022: 1755945, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36299680

RESUMO

This study is aimed at screening for differentially expressed long noncoding RNAs (lncRNAs) associated with the pathogenesis of diabetic retinopathy and verifying the role of lncZNRD1 in high glucose-induced injury of retinal microvascular endothelial cells. The retinal tissues of normal and diabetic rats were collected for high-throughput sequencing of differentially expressed lncRNAs. Retinal microvascular endothelial cells were treated with 50 mM glucose for 4 h, 8 h, 24 h, 48 h, and 72 h. Our results showed that compared with the control group, there were 736 differentially expressed lncRNAs in the retina tissue of the model group, including 226 upregulated genes and 736 downregulated genes. Based on the differentially expressed lncRNAs, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that the ErbB signaling pathway, transforming growth factor- (TGF-) ß signaling pathway, PI3K - Akt signaling pathway, cyclic adenosine 3,5-monophosphate (cAMP) signaling pathway, mitogen-activated protein kinase (MAPK) signaling pathway, and hypoxia-inducible factor-1 (HIF-1) signaling pathway were likely involved in the regulation of diabetic retinopathy. Compared with the control group, the expression of lncZNRD1-AS1 was significantly increased in retinal microvascular endothelial cells after treatment with high glucose for 24 h. Silencing lncZNRD1 promoted high glucose-induced apoptosis of microvascular endothelial cells. Additionally, silencing lncZNRD1 increased the expression levels of ALDH7A1 and ALDH3A2. In conclusion, lncZNRD1-AS1 demonstrated potentially beneficial function against high glucose-induced retina cell injury by regulating ALDH7A1 and ALDH3A2 expressions.


Assuntos
Diabetes Mellitus Experimental , Retinopatia Diabética , RNA Longo não Codificante , Ratos , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Retinopatia Diabética/genética , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Glucose , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Adenosina/metabolismo
5.
World J Clin Cases ; 9(2): 422-428, 2021 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-33521111

RESUMO

BACKGROUND: Posterior scleritis is one of the most easily missed and misdiagnosed diseases in ophthalmology. In this case we treated a patient with intravitreal dexamethasone implant that has not been extensively studied before. CASE SUMMARY: A 40-year-old female patient who had anxiety, palpitation, and insomnia presented with eye pain and decreased vision in the left eye. An eye examination indicated that her visual acuity (VA) was 40/100. Her left eye presented conjunctival edema, mild exophthalmos, clear cornea, KP(-), and clear aqueous humor. In the fundus, there was a cinerous retinal protuberance. Ultrasonography showed "T-sign" and no systemic association was detected in laboratory examination. One month after injection of dexamethasone implant, the patient exhibited VA of 20/20, fundus serous retinal detachment disappeared, and intraocular pressure of both eyes was at the normal level. CONCLUSION: Intravitreal injection of dexamethasone implant may be a safe and effective treatment for patients with idiopathic posterior scleritis.

6.
Endocrine ; 60(3): 445-457, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29564753

RESUMO

PURPOSE: Diabetic retinopathy (DR) is a major vision threatening disease mainly induced by high glucose. Despite great efforts were made to explore the etiology of DR, the exact mechanism responsible for its pathogenesis remains elusive. METHODS: In our study, we constructed diabetic rats via Streptozotocin (STZ) injection. TUNEL assay was employed to examine retinal cell apoptosis. The levels of mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) were analyzed via flow cytometry. The mRNA and protein levels of mitochondrial respiratory chain were investigated by RT-qPCR and western blot. RESULTS: Compared with normal rats, the retinal cell apoptosis rate in diabetic rats was significantly upregulated. What's more, the signals of 8-OHdG and the levels of Cytochrome C in diabetic rats were enhanced; however, the MnSOD signals and NADPH-1 levels were reduced. We investigated the effect of mitochondrialy targeted hOGG1 (MTS-hOGG1) on the primary rRECs under high glucose. Compared with vector-transfected cells, MTS-hOGG1-expressing cells blocked high glucose-induced cell apoptosis, the loss of MMP and the overproduction of ROS. In addition, under high glucose, MTS-hOGG1 transfection blocked the expression of Cytochrome C, but enhanced the expression of cytochrome c oxidase subunit 1 and NADPH-1. CONCLUSIONS: These findings indicated that high glucose induced cell apoptosis by causing the loss of MMP, the overproduction of ROS and mtDNA damage. Targeting DNA repair enzymes hOGG1 in mitochondria partly mitigated the high glucose-induced consequences, which shed new light for DR therapy.


Assuntos
Apoptose/fisiologia , DNA Glicosilases/metabolismo , Diabetes Mellitus Experimental/metabolismo , Retinopatia Diabética/metabolismo , Estresse Oxidativo/fisiologia , Retina/metabolismo , Animais , DNA Glicosilases/genética , Diabetes Mellitus Experimental/patologia , Retinopatia Diabética/patologia , Masculino , Potencial da Membrana Mitocondrial/fisiologia , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Retina/patologia , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...