Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Gerontol ; 180: 112265, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37482108

RESUMO

Sarcopenia is a common skeletal muscle degenerative disease characterized by decreased skeletal muscle mass and mitochondrial dysfunction that involves microRNAs (miR) as regulatory factors in various pathways. Exercise reduces age-related oxidative damage and chronic inflammation and increases autophagy, among others. Moreover, whether aerobic exercise can regulate mitochondrial homeostasis by modulating the miR-128/insulin-like growth factor-1 (IGF-1) signaling pathway and can improve sarcopenia requires further investigation. Interestingly, zebrafish have been used as a model for aging research for over a decade due to their many outstanding advantages. Therefore, we established a model of zebrafish sarcopenia using d-galactose immersion and observed substantial changes, including reduced skeletal muscle cross-sectional area, increased tissue fibrosis, decreased motility, increased skeletal muscle reactive oxygen species, and notable alterations in mitochondrial morphology and function. We found that miR-128 expression was considerably upregulated, where as Igf1 and peroxisome proliferator-activated receptor gamma coactivator 1-alpha were significantly downregulated; moreover, mitochondrial homeostasis was reduced. Four weeks of aerobic exercise delayed sarcopenia progression and prevented the disruption of mitochondrial function and homeostasis. The genes related to atrophy and miR-128 were downregulated, Igf1 expression was considerably upregulated, and the phosphorylation levels of Pi3k, Akt, and Foxo3a were upregulated. Furthermore, mitochondrial respiration and homeostasis were enhanced. In conclusion, aerobic exercise improved skeletal muscle quality and function via the miR-128/IGF-1 signaling pathway, consequently ameliorating mitochondrial homeostasis in aging skeletal muscle.


Assuntos
MicroRNAs , Sarcopenia , Animais , Sarcopenia/patologia , Peixe-Zebra/metabolismo , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Galactose/metabolismo , Músculo Esquelético/fisiologia , Mitocôndrias/metabolismo , Envelhecimento , MicroRNAs/genética , MicroRNAs/metabolismo , Homeostase
2.
Front Endocrinol (Lausanne) ; 14: 1162485, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37284220

RESUMO

Introduction: Recent reports indicate that mitochondrial quality decreases during non-alcoholic fatty liver disease (NAFLD) progression, and targeting the mitochondria may be a possible treatment for NAFLD. Exercise can effectively slow NAFLD progression or treat NAFLD. However, the effect of exercise on mitochondrial quality in NAFLD has not yet been established. Methods: In the present study, we fed zebrafish a high-fat diet to model NAFLD, and subjected the zebrafish to swimming exercise. Results: After 12 weeks, swimming exercise significantly reduced high-fat diet-induced liver injury, and reduced inflammation and fibrosis markers. Swimming exercise improved mitochondrial morphology and dynamics, inducing upregulation of optic atrophy 1(OPA1), dynamin related protein 1 (DRP1), and mitofusin 2 (MFN2) protein expression. Swimming exercise also activated mitochondrial biogenesis via the sirtuin 1 (SIRT1)/ AMP-activated protein kinase (AMPK)/ PPARgamma coactivator 1 alpha (PGC1α) pathway, and improved the mRNA expression of genes related to mitochondrial fatty acid oxidation and oxidative phosphorylation. Furthermore, we find that mitophagy was suppressed in NAFLD zebrafish liver with the decreased numbers of mitophagosomes, the inhibition of PTEN-induced kinase 1 (PINK1) - parkin RBR E3 ubiquitin protein ligase (PARKIN) pathway and upregulation of sequestosome 1 (P62) expression. Notably, swimming exercise partially recovered number of mitophagosomes, which was associated with upregulated PARKIN expression and decreased p62 expression. Discussion: These results demonstrate that swimming exercise could alleviate the effects of NAFLD on the mitochondria, suggesting that exercise may be beneficial for treating NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Hepatopatia Gordurosa não Alcoólica/terapia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Peixe-Zebra/metabolismo , Mitocôndrias/metabolismo , Ubiquitina-Proteína Ligases , Terapia por Exercício
3.
Nutrients ; 14(9)2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35565942

RESUMO

Obesity is a highly prevalent disease that can induce metabolic syndrome and is associated with a greater risk of muscular atrophy. Mitochondria play central roles in regulating the physiological metabolism of skeletal muscle; however, whether a decreased mitochondrial function is associated with impaired muscle function is unclear. In this study, we evaluated the effects of a high-fat diet on muscle mitochondrial function in a zebrafish model of sarcopenic obesity (SOB). In SOB zebrafish, a significant decrease in exercise capacity and skeletal muscle fiber cross-sectional area was detected, accompanied by high expression of the atrophy-related markers Atrogin-1 and muscle RING-finger protein-1. Zebrafish with SOB exhibited inhibition of mitochondrial biogenesis and fatty acid oxidation as well as disruption of mitochondrial fusion and fission in atrophic muscle. Thus, our findings showed that muscle atrophy was associated with SOB-induced mitochondrial dysfunction. Overall, these results showed that the SOB zebrafish model established in this study may provide new insights into the development of therapeutic strategies to manage mitochondria-related muscular atrophy.


Assuntos
Dieta Hiperlipídica , Sarcopenia , Animais , Dieta Hiperlipídica/efeitos adversos , Mitocôndrias/metabolismo , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Obesidade/metabolismo , Sarcopenia/metabolismo , Natação , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...