Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Epigenetics Chromatin ; 16(1): 34, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37743474

RESUMO

BACKGROUND: Despite well-documented effects on human health, the action modes of environmental pollutants are incompletely understood. Although transcriptome-based approaches are widely used to predict associations between chemicals and disorders, the molecular cues regulating pollutant-derived gene expression changes remain unclear. Therefore, we developed a data-mining approach, termed "DAR-ChIPEA," to identify transcription factors (TFs) playing pivotal roles in the action modes of pollutants. METHODS: Large-scale public ChIP-Seq data (human, n = 15,155; mouse, n = 13,156) were used to predict TFs that are enriched in the pollutant-induced differentially accessible genomic regions (DARs) obtained from epigenome analyses (ATAC-Seq). The resultant pollutant-TF matrices were then cross-referenced to a repository of TF-disorder associations to account for pollutant modes of action. We subsequently evaluated the performance of the proposed method using a chemical perturbation data set to compare the outputs of the DAR-ChIPEA and our previously developed differentially expressed gene (DEG)-ChIPEA methods using pollutant-induced DEGs as input. We then adopted the proposed method to predict disease-associated mechanisms triggered by pollutants. RESULTS: The proposed approach outperformed other methods using the area under the receiver operating characteristic curve score. The mean score of the proposed DAR-ChIPEA was significantly higher than that of our previously described DEG-ChIPEA (0.7287 vs. 0.7060; Q = 5.278 × 10-42; two-tailed Wilcoxon rank-sum test). The proposed approach further predicted TF-driven modes of action upon pollutant exposure, indicating that (1) TFs regulating Th1/2 cell homeostasis are integral in the pathophysiology of tributyltin-induced allergic disorders; (2) fine particulates (PM2.5) inhibit the binding of C/EBPs, Rela, and Spi1 to the genome, thereby perturbing normal blood cell differentiation and leading to immune dysfunction; and (3) lead induces fatty liver by disrupting the normal regulation of lipid metabolism by altering hepatic circadian rhythms. CONCLUSIONS: Highlighting genome-wide chromatin change upon pollutant exposure to elucidate the epigenetic landscape of pollutant responses outperformed our previously described method that focuses on gene-adjacent domains only. Our approach has the potential to reveal pivotal TFs that mediate deleterious effects of pollutants, thereby facilitating the development of strategies to mitigate damage from environmental pollution.


Assuntos
Poluentes Ambientais , Humanos , Animais , Camundongos , Poluentes Ambientais/toxicidade , Sequenciamento de Cromatina por Imunoprecipitação , Epigenômica , Genômica , Epigênese Genética
2.
Nat Genet ; 55(2): 187-197, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36653681

RESUMO

Atrial fibrillation (AF) is a common cardiac arrhythmia resulting in increased risk of stroke. Despite highly heritable etiology, our understanding of the genetic architecture of AF remains incomplete. Here we performed a genome-wide association study in the Japanese population comprising 9,826 cases among 150,272 individuals and identified East Asian-specific rare variants associated with AF. A cross-ancestry meta-analysis of >1 million individuals, including 77,690 cases, identified 35 new susceptibility loci. Transcriptome-wide association analysis identified IL6R as a putative causal gene, suggesting the involvement of immune responses. Integrative analysis with ChIP-seq data and functional assessment using human induced pluripotent stem cell-derived cardiomyocytes demonstrated ERRg as having a key role in the transcriptional regulation of AF-associated genes. A polygenic risk score derived from the cross-ancestry meta-analysis predicted increased risks of cardiovascular and stroke mortalities and segregated individuals with cardioembolic stroke in undiagnosed AF patients. Our results provide new biological and clinical insights into AF genetics and suggest their potential for clinical applications.


Assuntos
Fibrilação Atrial , Células-Tronco Pluripotentes Induzidas , Acidente Vascular Cerebral , Humanos , Fibrilação Atrial/genética , Biologia , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla/métodos , Polimorfismo de Nucleotídeo Único/genética , Acidente Vascular Cerebral/genética , Genoma Humano
3.
Nucleic Acids Res ; 50(W1): W175-W182, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35325188

RESUMO

ChIP-Atlas (https://chip-atlas.org) is a web service providing both GUI- and API-based data-mining tools to reveal the architecture of the transcription regulatory landscape. ChIP-Atlas is powered by comprehensively integrating all data sets from high-throughput ChIP-seq and DNase-seq, a method for profiling chromatin regions accessible to DNase. In this update, we further collected all the ATAC-seq and whole-genome bisulfite-seq data for six model organisms (human, mouse, rat, fruit fly, nematode, and budding yeast) with the latest genome assemblies. These together with ChIP-seq data can be visualized with the Peak Browser tool and a genome browser to explore the epigenomic landscape of a query genomic locus, such as its chromatin accessibility, DNA methylation status, and protein-genome interactions. This epigenomic landscape can also be characterized for multiple genes and genomic loci by querying with the Enrichment Analysis tool, which, for example, revealed that inflammatory bowel disease-associated SNPs are the most significantly hypo-methylated in neutrophils. Therefore, ChIP-Atlas provides a panoramic view of the whole epigenomic landscape. All datasets are free to download via either a simple button on the web page or an API.


Assuntos
Sequenciamento de Cromatina por Imunoprecipitação , Epigenômica , Animais , Humanos , Mineração de Dados , Epigenômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Modelos Animais , Atlas como Assunto , Bases de Dados como Assunto
4.
BMC Bioinformatics ; 23(1): 51, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35073843

RESUMO

BACKGROUND: Elucidating the modes of action (MoAs) of drugs and drug candidate compounds is critical for guiding translation from drug discovery to clinical application. Despite the development of several data-driven approaches for predicting chemical-disease associations, the molecular cues that organize the epigenetic landscape of drug responses remain poorly understood. RESULTS: With the use of a computational method, we attempted to elucidate the epigenetic landscape of drug responses, in terms of transcription factors (TFs), through large-scale ChIP-seq data analyses. In the algorithm, we systematically identified TFs that regulate the expression of chemically induced genes by integrating transcriptome data from chemical induction experiments and almost all publicly available ChIP-seq data (consisting of 13,558 experiments). By relating the resultant chemical-TF associations to a repository of associated proteins for a wide range of diseases, we made a comprehensive prediction of chemical-TF-disease associations, which could then be used to account for drug MoAs. Using this approach, we predicted that: (1) cisplatin promotes the anti-tumor activity of TP53 family members but suppresses the cancer-inducing function of MYCs; (2) inhibition of RELA and E2F1 is pivotal for leflunomide to exhibit antiproliferative activity; and (3) CHD8 mediates valproic acid-induced autism. CONCLUSIONS: Our proposed approach has the potential to elucidate the MoAs for both approved drugs and candidate compounds from an epigenetic perspective, thereby revealing new therapeutic targets, and to guide the discovery of unexpected therapeutic effects, side effects, and novel targets and actions.


Assuntos
Sequenciamento de Cromatina por Imunoprecipitação , Preparações Farmacêuticas , Sítios de Ligação , Análise de Dados , Epigênese Genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...