Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Inflammation ; 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441793

RESUMO

Psoriasis is a prevalent condition characterized by chronic inflammation, immune dysregulation, and genetic alterations, significantly impacting the well-being of affected individuals. Recently, a novel aspect of programmed cell death, ferroptosis, linked to iron metabolism, has come to light. This research endeavors to unveil novel diagnostic genes associated with ferroptosis in psoriasis, employing bioinformatic methods and experimental validation. Diverse analytical strategies, including "limma," Weighted Gene Co-expression Network Analysis (WGCNA), Least Absolute Shrinkage and Selection Operator (LASSO), Support Vector Machine Recursive Feature Elimination (SVM-RFE), and Random Forest (RF), were employed to pinpoint pivotal ferroptosis-related diagnostic genes (FRDGs) in the training datasets GSE30999, testing dataset GSE41662 and GSE14905. The discriminative potential of FRDGs in distinguishing between normal and psoriatic patients was gauged using Receiver Operating Characteristic (ROC) curves, while the functional pathways of FRDGs were scrutinized through Gene Set Enrichment Analysis (GSEA). Spearman correlation and ssGSEA analysis were applied to explore correlations between FRDGs and immune cell infiltration or oxidative stress-related pathways. The study identified six robust FRDGs - PPARD, MAPK14, PARP9, POR, CDCA3, and PDK4 - which collectively formed a model boasting an exceptional AUC value of 0.994. GSEA analysis uncovered their active involvement in psoriasis-related pathways, and substantial correlations with immune cells and oxidative stress were noted. In vivo, experiments confirmed the consistency of the six FRDGs in the psoriasis model with microarray results. In vitro, genetic knockdown or inhibition of MAPK14 using SW203580 in keratinocytes attenuated ferroptosis and reduced the expression of inflammatory cytokines. Furthermore, the study revealed that intercellular communication between keratinocytes and macrophages was augmented by ferroptotic keratinocytes, increased M1 polarization, and recruitment of macrophage was regulated by MAPK14. In summary, our findings unveil novel ferroptosis-related targets and enhance the understanding of inflammatory responses in psoriasis. Targeting MAPK14 signaling in keratinocytes emerges as a promising therapeutic approach for managing psoriasis.

2.
Cell Transplant ; 32: 9636897231210069, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37982384

RESUMO

Human umbilical cord mesenchymal stem cells (hUCMSC) have shown promising potential in ameliorating brain injury, but the mechanism is unclear. We explore the role of NogoA/NgR/Rho pathway in mediating hUCMSC to improve neurobehavioral status and alleviate brain injury in hypoxia/ischemia-induced CP (cerebral palsy) rat model in order to promote the clinical application of stem cell therapy in CP. The injury model of HT22 cells was established after 3 h hypoxia, and then co-cultured with hUCMSC. The rat model of CP was established by ligation of the left common carotid artery for 2.5 h. Subsequently, hUCMSC was administered via the tail vein once a week for a total of four times. The neurobehavioral status of CP rats was determined by behavioral experiment, and the pathological brain injury was determined by pathological staining method. The mRNA and protein expressions of NogoA, NgR, RhoA, Rac1, and CDC42 in brain tissues of rats in all groups and cell groups were detected by real-time quantitative polymerase chain reaction (RT-qPCR), Western blot, and immunofluorescence. The CP rats exhibited obvious motor function abnormalities and pathological damage. Compared with the control group, hUCMSC transplantation could significantly improve the neurobehavioral situation and attenuate brain pathological injury in CP rats. The relative expression of NogoA, NgR, RhoA mRNA, and protein in brain tissues of rats in the CP group was significantly higher than the rats in the sham and CP+hUCMSC group. The relative expression of Rac1, CDC42 mRNA, and protein in brain tissues of rats in the CP group was significantly lower than the rats in the sham and CP+hUCMSC group. The animal experiment results were consistent with the experimental trend of hypoxic injury of HT22 cells. This study confirmed that hUCMSC can efficiently improve neurobehavioral status and alleviate brain injury in hypoxia/ischemia-induced CP rat model and HT22 cell model through downregulating the NogoA/NgR/Rho pathway.


Assuntos
Lesões Encefálicas , Paralisia Cerebral , Células-Tronco Mesenquimais , Ratos , Humanos , Animais , Hipóxia/metabolismo , Isquemia/metabolismo , Células-Tronco Mesenquimais/metabolismo , Cordão Umbilical/metabolismo , Lesões Encefálicas/metabolismo , RNA Mensageiro/metabolismo
3.
Stem Cell Res Ther ; 14(1): 301, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37864199

RESUMO

AIM: Although the efficacy and safety of mesenchymal stem cell therapy for liver cirrhosis have been demonstrated in several studies. Clinical cases of mesenchymal stem cell therapy for patients with liver cirrhosis are limited and these studies lack the consistency of treatment effects. This article aimed to systematically investigate the efficacy and safety of mesenchymal stem cells in the treatment of liver cirrhosis. METHOD: The data source included PubMed/Medline, Web of Science, EMBASE, and Cochrane Library, from inception to May 2023. Literature was screened by the PICOS principle, followed by literature quality evaluation to assess the risk of bias. Finally, the data from each study's outcome indicators were extracted for a combined analysis. Outcome indicators of the assessment included liver functions and adverse events. Statistical analysis was performed using Review Manager 5.4. RESULTS: A total of 11 clinical trials met the selection criteria. The pooled analysis' findings demonstrated that both primary and secondary indicators had improved. Compared to the control group, infusion of mesenchymal stem cells significantly increased ALB levels in 2 weeks, 1 month, 3 months, and 6 months, and significantly decreased MELD score in 1 month, 2 months, and 6 months, according to a subgroup analysis using a random-effects model. Additionally, the hepatic arterial injection favored improvements in MELD score and ALB levels. Importantly, none of the included studies indicated any severe adverse effects. CONCLUSION: The results showed that mesenchymal stem cell was effective and safe in the treatment of liver cirrhosis, improving liver function (such as a decrease in MELD score and an increase in ALB levels) in patients with liver cirrhosis and exerting protective effects on complications of liver cirrhosis and the incidence of hepatocellular carcinoma. Although the results of the subgroup analysis were informative for the selection of mesenchymal stem cells for clinical treatment, a large number of high-quality randomized controlled trials validations are still needed.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Transplante de Células-Tronco Mesenquimais , Humanos , Transplante de Células-Tronco Mesenquimais/efeitos adversos , Cirrose Hepática/terapia , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia
4.
Front Pediatr ; 10: 897398, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35601435

RESUMO

Aim: There is insufficient evidence regarding the efficacy and safety of stem cell therapy for autism spectrum disorders. We performed the first meta-analysis of stem cell therapy for autism spectrum disorders in children to provide evidence for clinical rehabilitation. Methods: The data source includes PubMed/Medline, Web of Science, EMBASE, Cochrane Library and China Academic Journal, from inception to 24th JULY 2021. After sifting through the literature, the Cochrane tool was applied to assess the risk of bias. Finally, we extracted data from these studies and calculated pooled efficacy and safety. Results: 5 studies that met the inclusion criteria were included in current analysis. Meta-analysis was performed using rehabilitation therapy as the reference standard. Data showed that the Childhood Autism Rating Scale score of stem cell group was striking lower than the control group (WMD: -5.96; 95%CI [-8.87, -3.06]; p < 0.0001). The Clinical Global Impression score consolidated effect size RR = 1.01, 95%CI [0.87, 1.18], Z = 0.14 (p = 0.89), the effective rate for The Clinical Global Impression was 62% and 60% in the stem cell group and the control group, respectively. The occurrence events of adverse reactions in each group (RR = 1.55; 95%CI = 0.60 to 3.98; p = 0.36), there was no significant difference in the incidence of adverse reactions between the stem cell group and the control group. Conclusions: The results of this meta-analysis suggested that stem cell therapy for children with autism might be safe and effective. However, the evidence was compromised by the limitations in current study size, lacking standardized injection routes and doses of stem cells, as well as shortages in diagnostic tools and long period follow-up studies. Hence, it calls for more studies to systematically confirm the efficacy and safety of stem cell therapy for children with autism spectrum disorders.

5.
ACS Omega ; 7(4): 3738-3745, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35128282

RESUMO

Liver fibrosis is the intermediate process and inevitable stage of the development of chronic liver disease into cirrhosis. Reducing the degree of liver fibrosis plays an extremely important role in treating chronic liver disease and preventing liver cirrhosis and liver cancer. The formation of liver fibrosis is affected by iron deposition to a certain extent, and excessive iron deposition further induces liver cirrhosis and liver cancer. Herein, confocal microbeam X-ray fluorescence (µ-XRF) was used to determine the intensity and biodistribution of iron deposition at different time points in the process of liver fibrosis induced by thioacetamide (TAA) in rats. To our best knowledge, this is the first study using confocal µ-XRF to analyze hepatic iron deposition in hepatic fibrosis. The results showed that there are minor and trace elements such as iron, potassium, and zinc in the liver of rats. Continuous injection of TAA solution resulted in increasing liver iron deposition over time. The intensity of iron deposition in liver tissue was also significantly reduced after bone mesenchymal stem cells (BMSCs) were injected. These findings indicated that confocal µ-XRF can be used as a nondestructive and quantitative method of evaluating hepatic iron deposition in hepatic fibrosis, and iron deposition may play an important role in the progression of hepatic fibrosis induced by TAA.

6.
Front Bioeng Biotechnol ; 10: 1006845, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36588957

RESUMO

Aim: Although the efficacy and safety of stem cell therapy for cerebral palsy has been demonstrated in previous studies, the number of studies is limited and the treatment protocols of these studies lack consistency. Therefore, we included all relevant studies to date to explore factors that might influence the effectiveness of treatment based on the determination of safety and efficacy. Methods: The data source includes PubMed/Medline, Web of Science, EMBASE, Cochrane Library, from inception to 2 January 2022. Literature was screened according to the PICOS principle, followed by literature quality evaluation to assess the risk of bias. Finally, the outcome indicators of each study were extracted for combined analysis. Results: 9 studies were included in the current analysis. The results of the pooled analysis showed that the improvements in both primary and secondary indicators except for Bayley Scales of Infant and Toddler Development were more skewed towards stem cell therapy than the control group. In the subgroup analysis, the results showed that stem cell therapy significantly increased Gross Motor Function Measure (GMFM) scores of 3, 6, and 12 months. Besides, improvements in GMFM scores were more skewed toward umbilical cord mesenchymal stem cells, low dose, and intrathecal injection. Importantly, there was no significant difference in the adverse events (RR = 1.13; 95% CI = [0.90, 1.42]) between the stem cell group and the control group. Conclusion: The results suggested that stem cell therapy for cerebral palsy was safe and effective. Although the subgroup analysis results presented guiding significance in the selection of clinical protocols for stem cell therapy, high-quality RCTs validations are still needed.

7.
Cell Death Dis ; 12(9): 814, 2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34453037

RESUMO

Animal studies have indicated that SOX10 is one of the key transcription factors regulating the proliferation, migration and differentiation of multipotent neural crest (NC), and mutation of SOX10 in humans may lead to type 4 Waardenburg syndrome (WS). However, the exact role of SOX10 in human NC development and the underlying molecular mechanisms of SOX10-related human diseases remain poorly understood due to the lack of appropriate human model systems. In this study, we successfully generated SOX10-knockout human induced pluripotent stem cells (SOX10-/- hiPSCs) by the CRISPR-Cas9 gene editing tool. We found that loss of SOX10 significantly inhibited the generation of p75highHNK1+/CD49D+ postmigratory neural crest stem cells (NCSCs) and upregulated the cell apoptosis rate during NC commitment from hiPSCs. Moreover, we discovered that both the neuronal and glial differentiation capacities of SOX10-/- NCSCs were severely compromised. Intriguingly, we showed that SOX10-/- hiPSCs generated markedly more TFAP2C+nonneural ectoderm cells (NNE) than control hiPSCs during neural crest differentiation. Our results indicate that SOX10 is crucial for the transition of premigratory cells to migrating NC and is vital for NC survival. Taken together, these results provide new insights into the function of SOX10 in human NC development, and the SOX10-knockout hiPSC lines may serve as a valuable cell model to study the pathogenesis of SOX10-related human neurocristopathies.


Assuntos
Movimento Celular , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Crista Neural/citologia , Fatores de Transcrição SOXE/metabolismo , Apoptose/genética , Sequência de Bases , Biomarcadores/metabolismo , Diferenciação Celular/genética , Movimento Celular/genética , Forma Celular/genética , Células Epiteliais/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Neurônios/citologia , Neurônios/metabolismo , RNA Guia de Cinetoplastídeos/genética , Fatores de Transcrição SOXE/deficiência , Células de Schwann/citologia
8.
Theranostics ; 9(6): 1683-1697, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31037131

RESUMO

Rationale: Mesenchymal stem cells (MSC) hold great promise in the treatment of various diseases including autoimmune diseases, inflammatory diseases, etc., due to their pleiotropic properties. However, largely incongruent data were obtained from different MSC-based clinical trials, which may be partially due to functional heterogeneity among MSC. Here, we attempt to derive homogeneous mesenchymal stem cells with neuromesodermal origin from human pluripotent stem cells (hPSC) and evaluate their functional properties. Methods: Growth factors and/or small molecules were used for the differentiation of human pluripotent stem cells (hPSC) into neuromesodermal progenitors (NMP), which were then cultured in animal component-free and serum-free induction medium for the derivation and long-term expansion of MSC. The resulted NMP-MSC were detailed characterized by analyzing their surface marker expression, proliferation, migration, multipotency, immunomodulatory activity and global gene expression profile. Moreover, the in vivo therapeutic potential of NMP-MSC was detected in a mouse model of contact hypersensitivity (CHS). Results: We demonstrate that NMP-MSC express posterior HOX genes and exhibit characteristics similar to those of bone marrow MSC (BMSC), and NMP-MSC derived from different hPSC lines show high level of similarity in global gene expression profiles. More importantly, NMP-MSC display much stronger immunomodulatory activity than BMSC in vitro and in vivo, as revealed by decreased inflammatory cell infiltration and diminished production of pro-inflammatory cytokines in inflamed tissue of CHS models. Conclusion: Our results identify NMP as a new source of MSC and suggest that functional and homogeneous NMP-MSC could serve as a candidate for MSC-based therapies.


Assuntos
Técnicas de Cultura de Células/métodos , Diferenciação Celular , Células-Tronco Mesenquimais/fisiologia , Células-Tronco Pluripotentes/fisiologia , Animais , Terapia Biológica/métodos , Biomarcadores/análise , Movimento Celular , Proliferação de Células , Meios de Cultura Livres de Soro/química , Dermatite de Contato/terapia , Modelos Animais de Doenças , Humanos , Camundongos , Propriedades de Superfície , Resultado do Tratamento
9.
Stem Cell Res Ther ; 9(1): 51, 2018 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-29482621

RESUMO

BACKGROUND: The LIM-homeobox transcription factor islet-1 (ISL1) has been proposed as a marker for cardiovascular progenitor cells. This study investigated whether forced expression of ISL1 in human mesenchymal stem cells (hMSCs) improves myocardial infarction (MI) treatment outcomes. METHODS: The lentiviral vector containing the human elongation factor 1α promoter, which drives the expression of ISL1 (EF1α-ISL1), was constructed using the Multisite Gateway System and used to transduce hMSCs. Flow cytometry, immunofluorescence, Western blotting, TUNEL assay, and RNA sequencing were performed to evaluate the function of ISL1-overexpressing hMSCs (ISL1-hMSCs). RESULTS: The in vivo results showed that transplantation of ISL1-hMSCs improved cardiac function in a rat model of MI. Left ventricle ejection fraction and fractional shortening were greater in post-MI hearts after 4 weeks of treatment with ISL1-hMSCs compared with control hMSCs or phosphate-buffered saline. We also found that ISL1 overexpression increased angiogenesis and decreased apoptosis and inflammation. The greater potential of ISL1-hMSCs may be attributable to an increased number of surviving cells after transplantation. Conditioned medium from ISL1-hMSCs decreased the apoptotic effect of H2O2 on the cardiomyocyte cell line H9c2. To clarify the molecular basis of this finding, we employed RNA sequencing to compare the apoptotic-related gene expression profiles of control hMSCs and ISL1-hMSCs. The results showed that insulin-like growth factor binding protein 3 (IGFBP3) was the only gene in ISL1-hMSCs with a RPKM value higher than 100 and that the difference fold-change between ISL1-hMSCs and control hMSCs was greater than 3, suggesting that IGFBP3 might play an important role in the anti-apoptosis effect of ISL1-hMSCs through paracrine effects. Furthermore, the expression of IGFBP3 in the conditioned medium from ISL1-hMSCs was almost fourfold greater than that in conditioned medium from control hMSCs. Moreover, the IGFBP3 neutralization antibody reversed the apoptotic effect of ISL1-hMSCs-CM. CONCLUSIONS: These results suggest that overexpression of ISL1 in hMSCs promotes cell survival in a model of MI and enhances their paracrine function to protect cardiomyocytes, which may be mediated through IGFBP3. ISL1 overexpression in hMSCs may represent a novel strategy for enhancing the effectiveness of stem cell therapy after MI.


Assuntos
Proteínas com Homeodomínio LIM/genética , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Infarto do Miocárdio/terapia , Fatores de Transcrição/genética , Animais , Células Cultivadas , Humanos , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Proteínas com Homeodomínio LIM/metabolismo , Células-Tronco Mesenquimais/citologia , Miócitos Cardíacos/metabolismo , Comunicação Parácrina , Ratos , Ratos Sprague-Dawley , Fatores de Transcrição/metabolismo
10.
Stem Cell Reports ; 10(1): 120-133, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29276154

RESUMO

Charcot-Marie-Tooth disease type 1A (CMT1A), one of the most frequent inherited peripheral neuropathies, is associated with PMP22 gene duplication. Previous studies of CMT1A mainly relied on rodent models, and it is not yet clear how PMP22 overexpression leads to the phenotype in patients. Here, we generated the human induced pluripotent stem cell (hiPSC) lines from two CMT1A patients as an in vitro cell model. We found that, unlike the normal control cells, CMT1A hiPSCs rarely generated Schwann cells through neural crest stem cells (NCSCs). Instead, CMT1A NCSCs produced numerous endoneurial fibroblast-like cells in the Schwann cell differentiation system, and similar results were obtained in a PMP22-overexpressing iPSC model. Therefore, despite the demyelination-remyelination and/or dysmyelination theory for CMT1A pathogenesis, developmental disabilities of Schwann cells may be considered as an underlying cause of CMT1A. Our results may have important implications for the uncovering of the underlying mechanism and the development of a promising therapeutic strategy for CMT1A neuropathy.


Assuntos
Diferenciação Celular , Doença de Charcot-Marie-Tooth/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Modelos Biológicos , Células de Schwann/metabolismo , Doença de Charcot-Marie-Tooth/patologia , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Masculino , Proteínas da Mielina/metabolismo , Células de Schwann/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...