Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Tissue Res ; 392(3): 671-687, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36795153

RESUMO

Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have therapeutic potential in various diseases due to their capacity to transfer bioactive cargoes such as microRNAs (miRNAs or miRs) to recipient cells. The present study isolated EVs from rat MSCs and aimed to delineate their functions and molecular mechanisms in early brain injury following subarachnoid hemorrhage (SAH). We initially determined the expression of miR-18a-5p and ENC1 in hypoxia/reoxygenation (H/R)-induced brain cortical neurons and rat models of SAH induced by the endovascular perforation method. Accordingly, increased ENC1 and decreased miR-18a-5p were detected in H/R-induced brain cortical neurons and SAH rats. After MSC-EVs were co-cultured with cortical neurons, the effects of miR-18a-5p on neuron damage, inflammatory response, endoplasmic reticulum (ER) stress, and oxidative stress markers were evaluated based on ectopic expression and depletion experiments. miR-18a-5p overexpression in brain cortical neurons co-cultured with MSC-EVs was shown to impede neuron apoptosis, ER stress and oxidative stress while augmenting neuron viability. Mechanistically, miR-18a-5p bound to the 3'UTR of ENC1 and reduced its expression, weakening the interaction between ENC1 and p62. Through this mechanism, transfer of miR-18a-5p by MSC-EVs contributed to the eventual inhibition of early brain injury and neurological impairment following SAH. Overall, miR-18a-5p/ENC1/p62 may be a possible mechanism underlying the cerebral protective effects of MSC-EVs against early brain injury following SAH.


Assuntos
Lesões Encefálicas , Vesículas Extracelulares , Células-Tronco Mesenquimais , MicroRNAs , Hemorragia Subaracnóidea , Animais , Ratos , Hemorragia Subaracnóidea/complicações , Lesões Encefálicas/genética , Hipóxia , MicroRNAs/genética
2.
Ecotoxicol Environ Saf ; 247: 114208, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36279635

RESUMO

BACKGROUND: Several lines of evidence support a significant relationship between exposure to arsenic and diabetes. However, the underlying pathophysiological mechanisms remain incompletely elucidated. OBJECTIVE: This study examined the association and risk of circulating inflammatory mediators with hyperglycemia in coal-induced arsenicosis. METHODS: A cross-sectional study was conducted in the typical coal-burning area in which arsenicosis is endemic in Xingren County, Guizhou, China. A total of 299 arsenicosis subjects and 137 non-arsenic exposed volunteers were recruited for the present study. Participant's hyperglycemia-related parameters, including fasting blood glucose (FBG), fasting serum insulin (FINS), homeostasis model assessment for both insulin resistance (HOMA-IR) and pancreatic ß-cell function (HOMA-ß), as well as circulating inflammatory biomarkers i.e., Interleukins-1ß (IL-1ß), IL- 2, IL - 6, IL-10, IL- 17, IL-18 and TNF-α), were determined and analyzed after completing questionnaire investigation and physical examination. RESULTS: The results clearly showed that coal-burning arsenic exposure was significantly associated with hyperglycemia-related outcomes. Specifically, arsenicosis subjects from the coal-burning endemic area showed a higher level of FBG (median 5.87 mmol/L vs. 4.65 mmol/L) and increased prevalence of hyperglycemia (26.76% vs.16.79%) than reference subjects from the non-arsenic endemic area. Increased HOMA-IR (median 1.93 vs.1.44) and declined HOMA-ß (median 96.23 vs. 84.91) were also noted in arsenicosis subjects. Moreover, arsenic exposure was significantly associated with the increased risk of hyperglycemia (adjusted OR = 2.32, 95% CI: 1.37,3.93). In addition, a positive association between arsenic exposure and inflammatory response was observed, and the alteration in circulating inflammatory markers were found to be significantly associated with hyperglycemia-related parameters. Meanwhile, there was a positive relationship between elevated circulating IL-1ß, IL-18, IL-6, as well as decreased IL-10 and the increasing risk of arsenic-induced hyperglycemia [adjusted OR = 2.19 (95% CI: 1.26, 3.13);1.13 (95%CI: 1.08, 1.37); 1.19 (95% CI: 1.13, 1.56); 1.15(95% CI: 1.05, 1.36); respectively]. Path analysis further revealed that the mediating effect of IL-1ß and IL-18 on the relationship between arsenic exposure and hyperglycemia was closely associated with pancreatic ß-cell dysfunction, while those of IL-6 and IL-10 on the association between arsenic exposure and hyperglycemia were partially through insulin resistance. CONCLUSIONS: This population-based study indicated that arsenic exposure has a clear disruptive effect on glucose homeostasis, and an elevated inflammatory response was implicated in the risk of arsenic-induced hyperglycemia.


Assuntos
Intoxicação por Arsênico , Arsênio , Hiperglicemia , Resistência à Insulina , Humanos , Carvão Mineral , Intoxicação por Arsênico/epidemiologia , Interleucina-10 , Interleucina-18 , Estudos Transversais , Interleucina-6 , Arsênio/toxicidade , Arsênio/análise , Biomarcadores , Hiperglicemia/induzido quimicamente , Hiperglicemia/epidemiologia
3.
Hum Exp Toxicol ; 41: 9603271221121313, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35968550

RESUMO

Increasing evidence supports the role of arsenic in dysregulated immune and inflammation responses, while, safe and effective treatments have not been fully examined. Rosa roxburghii Tratt (RRT), a traditional Chinese edible fruit with potential immunoregulatory activities, was considered as a dietary supplement to explore its protective effects and possible mechanism in arsenic-induced dysregulated inflammation responses. We enrolled 209 arsenicosis patients and 41 controls to obtain baseline data, including the degree of arsenic poisoning prior to the RRT juice (RRTJ) intervention. Then, based on criteria of inclusion and exclusion and the principle of voluntary participation, 106 arsenicosis patients who volunteered to receive treatment were divided into RRTJ (n = 53) and placebo (n = 53) groups randomly. After three months follow-up, 89 subjects (46 and 43 of the RRTJ and placebo groups, respectively) completed the study and were examined for the effects and possible mechanisms of RRTJ on the Th17 cells-related pro-inflammatory responses in peripheral blood mononuclear cells (PBMCs). The PBMCs had higher levels of Th17 and Th17-related inflammatory cytokines IL-17, IL-6, and RORγt. Furthermore, the gene expressions of STAT3 and SOCS3 in PBMCs increased and decreased, respectively. Conversely, RRTJ decreased the number of Th17 cells, secretion of IL-17, IL-6, RORγt, and relative mRNA levels of STAT3, and increased the transcript levels of SOCS3. This study provides limited evidence that possible immunomodulatory effects of RRTJ on the critical regulators, IL-6 and STAT3, of the Th17 cells in arsenicosis patients, which indicated that IL-6/STAT3 pathway might appear as a potential therapeutic target in arsenicosis.


Assuntos
Intoxicação por Arsênico , Arsênio , Fitoterapia , Preparações de Plantas , Rosa , Arsênio/toxicidade , Intoxicação por Arsênico/genética , Intoxicação por Arsênico/metabolismo , Intoxicação por Arsênico/terapia , Sucos de Frutas e Vegetais , Humanos , Inflamação/induzido quimicamente , Interleucina-17/metabolismo , Interleucina-6 , Leucócitos Mononucleares/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares , Preparações de Plantas/metabolismo , Preparações de Plantas/uso terapêutico , Rosa/metabolismo
4.
Biol Trace Elem Res ; 200(12): 4967-4976, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35064870

RESUMO

Coal-burning type of arsenism, a chronic arsenism caused by environmental arsenic pollution, found firstly at Guizhou Province of China, manifested as the disruption of pro- and anti-inflammatory T cell balance and multiple organ damage, while no specific treatment for the arsenism patients. The effect of methylation of the forkhead box P3 (Foxp3) promoter region on arsenic-induced disruption of pro- and anti-inflammatory T cell balance was first evaluated in this study, between the control and arsenism groups. The results show that arsenic can induce the hypermethylation of 6 sites in the Foxp3 promoter by upregulating the expression of recombinant DNA Methyltransferase 1 (Dnmt1) mRNA, leading to the downregulation of Foxp3 mRNA, Tregs, and interleukin 10 (IL-10, anti-inflammatory cytokine) levels, and increased the levels of interleukin 17 (IL-17, pro-inflammatory cytokine) in the peripheral blood of patients with arsenic poisoning. Further randomized controlled double-blind experiments (including the placebo control groups and the Ginkgo biloba extract (GBE) intervention groups) showed that compared to the placebo control group or before GBE intervention, the levels of Dnmt1 mRNA, Foxp3 methylation, and IL-17 in the peripheral blood of the GBE intervention group were significantly decreased after intervention (P < 0.05), but the levels of regulatory T cells (Tregs) and IL-10 were significantly increased (P < 0.05). Our study provides some limited evidence that GBE can attenuate the disruption of pro- and anti-inflammatory balance of peripheral blood in arsenism patients by decreasing hypermethylation of the Foxp3 promoter region. This study provides scientific basis for further understanding a possible natural medicinal plant, GBE, as a more effective measure to prevent and control the disruption of pro- and anti-inflammatory balance caused by coal-burning type of arsenism.


Assuntos
Arsênio , Interleucina-10 , Anti-Inflamatórios , Arsênio/toxicidade , Carvão Mineral , Citocinas/genética , DNA Recombinante , Fatores de Transcrição Forkhead/genética , Ginkgo biloba , Humanos , Interleucina-10/genética , Interleucina-17/genética , Metiltransferases/genética , Extratos Vegetais/farmacologia , Regiões Promotoras Genéticas , RNA Mensageiro
5.
Environ Toxicol ; 36(10): 2073-2092, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34251737

RESUMO

Arsenic is a well-known environmental toxicant and carcinogen, which has been epidemiologically proved related to the increased hepatic disorders. Researches have shown that aseptic inflammation and abnormal immune response are associated with arsenic-induced liver injury. However, the immunotoxic effects of liver have not been extensively characterized. Ginkgo biloba extract (GBE), a natural products of G. biloba leaves with proven anti-inflammatory and potential immunoregulatory activities, was used as intervention agent to explore its protective effects on arsenic-induced hepatotoxicity. Thus, the underlying mechanism of the immunotoxic effects on arsenic-induced liver injury were investigated in 2.5, 5.0, and 10.0 mg/kg NaAsO2 of Wistar rats for 16 weeks. Subsequently, GBE was used as intervention agent in 50 mg/kg for 6 weeks after cessation of arsenic exposure. The ratio of Th17 to Treg cells in peripheral blood as well as the secretion of inflammatory cytokines IL-17A, IL-6, TGF-ß1, and IL-10 in serum and liver were detected. Meanwhile, the notable activation of aseptic inflammation-related molecule TLR4 and its downstream targets MyD88 and NF-κB in the liver were observed. In this work, we confirmed that subchronic exposed to arsenic triggered the infiltration of inflammatory cells in rat liver, coupled with obvious histopathological changes and aberrant hepatic serum biochemical parameters. Meanwhile, imbalanced immune response was verified by the notable abnormal ratio of Th17 to Treg cells in peripheral blood as well as the secretion of inflammatory cytokines IL-17A, IL-6, TGF-ß1, and IL-10 in serum and liver of arsenic exposed rats. Further, the level of TLR4, MyD88, and NF-κB in liver both transcription and translation activity were raised. Subsequently, GBE markedly mitigated arsenic-induced liver injury, most impressively, post treatment with GBE prominently suppressed the overactivated inflammatory-related TLR4-MyD88-NF-κB pathway and evidently decreased the secretion of inflammation cytokines. Meanwhile, the disturbance of pro- and anti-inflammatory response was reversed. We concluded that the disruption of pro- and anti-inflammatory T-cells balance caused by cytokines mediated cell-cell interactions may be one of the mechanisms underlying arsenic-induced liver injury and that GBE intervention exerts an evidence protective effects, which might be closely associated with the suppression of inflammatory-related TLR4 pathway.


Assuntos
Arsênio , Doença Hepática Crônica Induzida por Substâncias e Drogas , Animais , Arsênio/toxicidade , Comunicação Celular , Citocinas , Ginkgo biloba , Extratos Vegetais/farmacologia , Ratos , Ratos Wistar
6.
J Cell Physiol ; 236(8): 6025-6041, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33481270

RESUMO

Arsenicosis induced by chronic exposure to arsenic is recognized as one of the main damaging effects on public health. Exposure to arsenic can cause hepatic fibrosis, but the molecular mechanisms by which this occurs are complex and elusive. It is not known if miRNAs are involved in arsenic-induced liver fibrosis. We found that in the livers of mice exposed to arsenite, there were elevated levels of microRNA-21 (miR-21), phosphorylated mammalian target of rapamycin (p-mTOR), and arginase 1 (Arg1); low levels of phosphatase and tensin homolog (PTEN); and more extensive liver fibrosis. For cultured cells, arsenite-induced miR-21, p-mTOR, and Arg1; decreased PTEN; and promoted M2 polarization of macrophages derived from THP-1 monocytes (THP-M), which caused secretion of fibrogenic cytokines, including transforming growth factor-ß1. Coculture of arsenite-treated, THP-M with LX-2 cells induced α-SMA and collagen I in the LX-2 cells and resulted in the activation of these cells. Downregulation of miR-21 in THP-M inhibited arsenite-induced M2 polarization and activation of LX-2 cells, but cotransfection with PTEN siRNA or a miR-21 inhibitor reversed this inhibition. Moreover, knockout of miR-21 in mice attenuated liver fibrosis and M2 polarization compared with WT mice exposed to arsenite. Additionally, LN, PCIII, and HA levels were higher in patients with higher hair arsenic levels, and levels of miR-21 were higher than controls and positively correlated with PCIII, LN, and HA levels. Thus, arsenite induces the M2 polarization of macrophages via miR-21 regulation of PTEN, which is involved in the activation of hepatic stellate cells and hepatic fibrosis. The results establish a previously unknown mechanism for arsenicosis-induced fibrosis.


Assuntos
Arsenitos/metabolismo , Cirrose Hepática/genética , Macrófagos/metabolismo , MicroRNAs/genética , Animais , Regulação para Baixo , Células Estreladas do Fígado/efeitos dos fármacos , Humanos , Fígado/metabolismo , Camundongos , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/genética
7.
Environ Pollut ; 268(Pt A): 115810, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33162208

RESUMO

Arsenic is a potent toxicant, and long-term exposure to inorganic arsenic causes lung damage. M2 macrophages play an important role in the pathogenesis of pulmonary fibrosis. However, the potential connections between arsenic and M2 macrophages in the development of pulmonary fibrosis are elusive. C57BL/6 mice were fed with drinking water containing 0, 10 and 20 ppm arsenite for 12 months. We have found that, in lung tissues of mice, arsenite, a biologically active form of arsenic, elevated H19, c-Myc, and Arg1; decreased let-7a; and caused pulmonary fibrosis. For THP-1 macrophages (THP-M) and bone-marrow-derived macrophages (BMDMs), 8 µM arsenite increased H19, c-Myc, and Arg1; decreased let-7a; and induced M2 polarization of macrophages, which caused secretion of the fibrogenic cytokine, TGF-ß1. Down-regulation of H19 or up-regulation of let-7a reversed the arsenite-induced M2 polarization of macrophages. Arsenite-treated THP-M and BMDMs co-cultured with MRC-5 cells or primary lung fibroblasts (PLFs) elevated levels of p-SMAD2/3, SMAD4, α-SMA, and collagen I in lung fibroblasts and resulted in the activation of lung fibroblasts. Knockout of H19 or up-regulation of let-7a in macrophages reversed the effects. The results indicated that H19 functioned as an miRNA sponge for let-7a, which was involved in arsenite-induced M2 polarization of macrophages and induced the myofibroblast differentiation phenotype by regulation of c-Myc. In the sera of arseniasis patients, levels of hydroxyproline and H19 were higher, and levels of let-7a were lower than levels in the controls. These observations elucidate a possible mechanism for arsenic exposure-induced pulmonary fibrosis.


Assuntos
Arsênio , MicroRNAs , Fibrose Pulmonar , RNA Longo não Codificante , Animais , Arsênio/toxicidade , Diferenciação Celular , Humanos , Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , Miofibroblastos , Fibrose Pulmonar/induzido quimicamente , RNA Longo não Codificante/genética
8.
Int J Biol Sci ; 16(3): 483-494, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32015684

RESUMO

Endemic arsenicosis is a public health problem that affects thousands of people worldwide. However, the biological mechanism involved is not well characterized, and there is no specific treatment. Exposure to arsenic may be associated with immune-related problems. In the present work, we performed an investigation to determine whether the Th17/Treg balance was abnormal in peripheral blood mononuclear cells (PBMCs) of patients with arsenicosis caused by burning coal. Furthermore, we investigated the effect of Ginkgo biloba extract (GBE) on the Th17/Treg imbalance in patients with arsenicosis. In this trial, 81 arsenicosis patients and 37 controls were enrolled. The numbers of Th17 and Treg cells, as well as related transcription factors and serum cytokines, were determined at the beginning and end of the study. Patients with arsenicosis exhibited higher levels of Th17 cells, Th17-related cytokines (IL-17A and IL-6), and the transcription factor RORγt. There were lower levels of Treg cells, a Treg-related cytokine (IL-10), and the transcription factor Foxp3 as compared with controls. There was a positive correlation between the levels of Th17 cells and IL-17A and the levels of arsenic in hair. Arsenicosis patients were randomly assigned to a GBE treatment group or a placebo group. After 3 months of follow-up, 74 patients completed the study (39 cases in the GBE group and 35 in the placebo group). Administration of GBE to patient upregulated the numbers of Treg cells and the level of IL-10 and downregulated the numbers of Th17 cells and the levels of cytokines associated with Th17 cells. The mRNA levels of Foxp3 and RORγt were increased and decreased, respectively. These results indicated that exposure to arsenic is associated with immune-related problems. The present investigation describes a previously unknown mechanism showing that an imbalance of pro- and anti-inflammatory T cells is involved in the pathogenesis of arsenicosis and that a GBE exerts effects on arsenicosis through regulation of the pro- and anti-inflammatory T cell balance.


Assuntos
Intoxicação por Arsênico/tratamento farmacológico , Intoxicação por Arsênico/imunologia , Extratos Vegetais/uso terapêutico , Linfócitos T Reguladores/metabolismo , Linfócitos T/metabolismo , Adulto , Células Cultivadas , Feminino , Fatores de Transcrição Forkhead/sangue , Ginkgo biloba , Humanos , Interleucina-10/sangue , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Masculino , Pessoa de Meia-Idade , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/sangue , Linfócitos T/efeitos dos fármacos , Linfócitos T Reguladores/efeitos dos fármacos , Células Th17/efeitos dos fármacos , Células Th17/metabolismo
9.
Ecotoxicol Environ Saf ; 190: 110174, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31927192

RESUMO

To evaluate the effect of coal-burning arsenic (As) exposure on lung function and the potential underlying mechanisms, a total of 217 As-exposed subjects and 75 reference subjects were recruited into this study. Hair arsenic (H-As), pulmonary function tests, and serum inflammatory markers CC16, SP-A, MMP-9, and TIMP-1 were evaluated. Residents from As-exposed areas showed higher H-As concentrations (median 0.25 µg/g) than subjects from the reference area (median 0.14 µg/g). Large reductions in lung function parameters were noted in the As-exposed group. A significant negative correlation was observed between H-As concentrations and lung function. Specifically, monotonic negative dose-response relationships were observed between H-As and FEV1(%), FEV1/FVC (%) and FEF75 (%) (all P < 0.05), while the associations between H-As and FVC (%), FEF25 (%), and FEF50 (%) were nonlinear (P for nonlinearity = 0.03, 0.001, 0.01, respectively). In addition, there was a direct positive relationship between H-As and the inflammatory response. Alterations in inflammatory biomarkers (CC16, SP-A, MMP-9, and MMP-9/TIMP-1) were significantly associated with As-induced lung function impairment. Thus, this population-based study revealed that As exposure has significant toxic effects on lung function and increased inflammation may occur during this toxic process. We provide scientific evidence for an As-induced alteration in inflammatory biomarkers and pulmonary damage in an As-exposed population. The results of this study can inform risk assessment and risk control processes in relation to human As exposure in coal-burning arsenicosis areas.


Assuntos
Intoxicação por Arsênico/fisiopatologia , Arsênio/análise , Carvão Mineral , Poluentes Ambientais/análise , Pulmão/fisiopatologia , Adulto , Intoxicação por Arsênico/sangue , Intoxicação por Arsênico/epidemiologia , Intoxicação por Arsênico/metabolismo , Monitoramento Biológico , China/epidemiologia , Feminino , Cabelo/química , Humanos , Masculino , Metaloproteinase 9 da Matriz/sangue , Pessoa de Meia-Idade , Proteína A Associada a Surfactante Pulmonar/sangue , Testes de Função Respiratória , Inibidor Tecidual de Metaloproteinase-1/sangue , Uteroglobina/sangue
10.
Sci Total Environ ; 680: 1-9, 2019 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-31085440

RESUMO

Chronic exposure to arsenic remains a major environmental public health concern worldwide, affecting hundreds of millions of people. Arsenic-induced multiorgan damage and miRNA expression changes after arsenic exposure have been determined, but their associations and risks have not been fully examined. In this study, we measured the expression levels of five miRNAs in plasma from control and arsenic poisoned populations, and we analyzed the relationship between miRNAs and multiorgan damage. The results clearly show that the upregulation of miR-155 expression can increase the risk of arsenic induced skin damage (OR = 10.55; 95% CI: 6.02, 18.47); further, there is a link between the expression of miR-21 (OR = 11.84; 95% CI: 5.34, 26.28) and miR-145 (OR = 2.39; 95% CI: 1.61, 3.55) and liver damage, and miR-191 and kidney damage (OR = 3.65; 95% CI: 1.49, 8.93). In addition, we analyzed the diagnostic value of miRNAs associated with specific organ damage in arsenic-induced multiorgan damage. It was found that the miR-155 has a certain diagnostic value in arsenic-induced skin damage (AUC = 0.83), miR-21 and miR-145 have diagnostic value for liver damage (AUC = 0.80, 0.81) and miR-191 has diagnostic value for kidney damage (AUC = 0.83). This study provides the first comprehensive assessment of the association and risk of five miRNAs with arsenic-induced multiorgan damage. The study can provide a scientific basis for further understanding the causes of arsenic-induced multiorgan damage, identification of possible biological markers, and improvement of targeted prevention and control strategies.


Assuntos
Intoxicação por Arsênico , Arsênio , Biomarcadores/metabolismo , Poluentes Ambientais , MicroRNAs/metabolismo , Humanos
11.
Environ Int ; 129: 18-27, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31102951

RESUMO

BACKGROUND: Currently, most arsenic (As) studies in populations are concerned with water-borne arsenicosis. However, residents in Xingren County of Guizhou Province, Southwest of China, represent a unique case of arsenicosis which is related to indoor combustion of high As-containing coal. This study aimed to assess the alterations of As levels and its risk factors in coal-borne arsenicosis residents during the past 20 years. METHODS: Four follow-up investigations in Xingren County were selected from the year 1998 to 2017, a total of 245, 272, 584, and 309 residents were involved in the four investigations, respectively. Local external environmental medium (coal, soil, water, air, rice, corn and chili peppers) and biological samples (urine, hair) were collected at each time of investigation for total As analysis. Sociodemographics and lifestyles variables were extracted from the questionnaire investigation. Both univariate and multivariate unconditional logistic regression models were performed to analyze the variation of risk factors for coal-borne arsenicosis. RESULTS: A substantial reduction of total As levels was observed both in external environmental medium and biological samples in the unique coal-borne arsenicosis region, especially since the year 2006. In addition, age, duration of consuming high As-containing coal and smoking status were found to be the most significant risk factors for coal-borne arsenicosis during the past 20 years by both two different logistic regression models. Room ventilation and grain drying modes were no longer to be risk factors since 1998 survey. Annual household income had always been an important protective factor for coal-borne arsenicosis in recent 20 years by both two different logistic regression models. Grain storage modes had become significant protective factor in 2014 and 2017 survey. A certain correlation between sex, education and coal-borne arsenicosis was observed by univariate logistic regression model but no clear links were found by multivariate logistic regression model. CONCLUSIONS: Considerable efforts to blocking As exposure from burning coal and As contaminated foods in this region are observed over the study period. Further practical health education programs may need to target individuals with long-term of As exposure, lower socioeconomic status and smoking in order to better prevent and control the occurrence and development of coal-borne arsenicosis.


Assuntos
Arsênio/metabolismo , Conhecimentos, Atitudes e Prática em Saúde , China , Carvão Mineral , Feminino , Seguimentos , Humanos , Masculino , Mineração , Fatores de Risco , Fatores Sexuais
12.
Toxicol Lett ; 295: 220-228, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29705342

RESUMO

Arsenic, an established human carcinogen, causes genetic toxicity. However, the molecular mechanisms involved remain unknown. MicroRNAs (miRNAs) are regulators that participate in fundamental cellular processes. In the present investigation, we selected, as research subjects, patients with arsenic poisoning caused by burning of coal in Guizhou Province, China. For these patients, the plasma levels of miR-145 were up-regulated. In L-02 cells, arsenite, an active form of arsenic, induced up-regulation of miR-145 and down-regulation of ERCC1 and ERCC2, and caused DNA damage. For L-02 cells, transfection with an miR-145 inhibitor prevented arsenite-induced DNA damage and decreased ERCC2 levels. Luciferase reporter assays showed that miR-145 regulated ERCC2 expression by targeting the 3'-UTR of ERCC2, but not that for ERCC1. The present results demonstrate that arsenite induces the over-expression of miR-145 and inhibits DNA repair via targeting ERCC2, thus promoting DNA damage. The information provides a new mechanism for arsenic-induced liver injury.


Assuntos
Intoxicação por Arsênico/etiologia , Arsenitos/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Dano ao DNA , Poluentes Ambientais/toxicidade , Hepatócitos/efeitos dos fármacos , Fígado/efeitos dos fármacos , MicroRNAs/metabolismo , Compostos de Sódio/toxicidade , Proteína Grupo D do Xeroderma Pigmentoso/metabolismo , Regiões 3' não Traduzidas , Adulto , Apoptose/efeitos dos fármacos , Intoxicação por Arsênico/genética , Intoxicação por Arsênico/metabolismo , Intoxicação por Arsênico/patologia , Sítios de Ligação , Estudos de Casos e Controles , Linhagem Celular , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Endonucleases/genética , Endonucleases/metabolismo , Feminino , Regulação da Expressão Gênica , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Fígado/metabolismo , Fígado/patologia , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Transdução de Sinais/efeitos dos fármacos , Proteína Grupo D do Xeroderma Pigmentoso/genética
13.
Carcinogenesis ; 38(6): 615-626, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28419250

RESUMO

Arsenite is well established as a human carcinogen, but the molecular mechanisms leading to arsenite-induced carcinogenesis are complex and elusive. Accelerated glycolysis, a common process in tumor cells called the Warburg effect, is associated with various biological phenomena. However, the role of glycolysis induced by arsenite is unknown. We have found that, with chronic exposure to arsenite, L-02 cells undergo a metabolic shift to glycolysis. In liver cells exposed to arsenite, hypoxia inducible factor-1α (HIF-1α) and monocarboxylate transporter-4 (MCT-4) are over-expressed. MCT-4, directly mediated by HIF-1α, maintains a high level of glycolysis, and the enhanced glycolysis promotes pro-inflammatory properties, which are involved in arsenite carcinogenesis. In addition, serum lactate and cytokines are higher in arsenite-exposed human populations, and there is a positive correlation between them. Moreover, there is a positive relationship between lactate and cytokines with arsenic in hair. In sum, these findings indicate that MCT-4, mediated by HIF-1α, enhances the glycolysis induced by arsenite. Lactate, the end product of glycolysis, is released into the extracellular environment. The acidic microenvironment promotes production of pro-inflammatory cytokines, which contribute to arsenite-induced liver carcinogenesis. These results provide a link between the induction of glycolysis and inflammation in liver cells exposed to arsenite, and thus establish a previously unknown mechanism for arsenite-induced hepatotoxicity.


Assuntos
Arsenitos/toxicidade , Glicólise/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo , Neoplasias Hepáticas , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas Musculares/metabolismo , Teratogênicos/toxicidade , Animais , Transformação Celular Neoplásica/induzido quimicamente , Transformação Celular Neoplásica/metabolismo , Humanos , Inflamação/patologia , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Células Tumorais Cultivadas
14.
Toxicol Res (Camb) ; 6(2): 162-172, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30090486

RESUMO

Endemic arsenism, caused by burning coal containing high levels of arsenic, is found only in the Guizhou and Shanxi Provinces of China. Dysregulated microRNAs (miRNAs), detected in the blood, are emerging as promising biomarkers. At present, little is known about the change and clinical efficacy of circulating miRNAs in patients with endemic arsenism produced by burning of coal. Here, we determined, by using TaqMan Human miRNA Array Chips, the differential expression of plasma miRNAs between patients with arsenism caused by coal-burning and a control group. Four increased miRNAs (miR-21, miR-145, miR-155, and miR-191) were verified in a larger sample by quantitative real-time PCR. Furthermore, bioinformatics and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were used to associate changes in plasma levels of the miRNAs with their functions and their effects on various pathways. The results of chip array assays show that the levels of miR-21, miR-141, miR-148a, miR-145, miR-155, miR-191, miR-218, and miR-491 were most prominently increased and that the levels of miR-200b, miR-200c, miR-26, and miR-34c were decreased. The qRT-PCR results confirm that the circulating levels of miR-21, miR-145, miR-155, and miR-191 are increased in patients with arsenism caused by coal-burning. KEGG analyses show that these miRNAs inhibit the target genes of pathways related to immune inflammation, oxidative stress, and DNA damage repair. Therefore, the four miRNAs may be biomarkers of endemic arsenism caused by coal-burning. Further studies with larger samples should be performed to confirm these findings and to elucidate the underlying mechanisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...