Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 16498, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37779126

RESUMO

SARS-CoV-2 subunit vaccines continue to be the focus of intense clinical development worldwide. Protein antigens in these vaccines most commonly consist of the spike ectodomain fused to a heterologous trimerization sequence, designed to mimic the compact, prefusion conformation of the spike on the virus surface. Since 2020, we have produced dozens of such constructs in CHO cells, consisting of spike variants with different mutations fused to different trimerization sequences. This set of constructs displayed notable conformational heterogeneity, with two distinct trimer species consistently detected by analytical size exclusion chromatography. A recent report showed that spike ectodomain fusion constructs can adopt an alternative trimer conformation consisting of loosely associated ectodomain protomers. Here, we applied multiple biophysical and immunological techniques to demonstrate that this alternative conformation is formed to a significant extent by several SARS-CoV-2 variant spike proteins. We have also examined the influence of temperature and pH, which can induce inter-conversion of the two forms. The substantial structural differences between these trimer types may impact their performance as vaccine antigens.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Cricetinae , Humanos , Vacinas contra COVID-19/genética , Temperatura , Cricetulus , Antígenos , Mutação , Concentração de Íons de Hidrogênio , Anticorpos Neutralizantes
2.
Commun Med (Lond) ; 3(1): 116, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37612423

RESUMO

BACKGROUND: As the COVID-19 pandemic continues to evolve, novel vaccines need to be developed that are readily manufacturable and provide clinical efficacy against emerging SARS-CoV-2 variants. Virus-like particles (VLPs) presenting the spike antigen at their surface offer remarkable benefits over other vaccine antigen formats; however, current SARS-CoV-2 VLP vaccines candidates in clinical development suffer from challenges including low volumetric productivity, poor spike antigen density, expression platform-driven divergent protein glycosylation and complex upstream/downstream processing requirements. Despite their extensive use for therapeutic protein manufacturing and proven ability to produce enveloped VLPs, Chinese Hamster Ovary (CHO) cells are rarely used for the commercial production of VLP-based vaccines. METHODS: Using CHO cells, we aimed to produce VLPs displaying the full-length SARS-CoV-2 spike. Affinity chromatography was used to capture VLPs released in the culture medium from engineered CHO cells expressing spike. The structure, protein content, and glycosylation of spikes in VLPs were characterized by several biochemical and biophysical methods. In vivo, the generation of neutralizing antibodies and protection against SARS-CoV-2 infection was tested in mouse and hamster models. RESULTS: We demonstrate that spike overexpression in CHO cells is sufficient by itself to generate high VLP titers. These VLPs are evocative of the native virus but with at least three-fold higher spike density. In vivo, purified VLPs elicit strong humoral and cellular immunity at nanogram dose levels which grant protection against SARS-CoV-2 infection. CONCLUSIONS: Our results show that CHO cells are amenable to efficient manufacturing of high titers of a potently immunogenic spike protein-based VLP vaccine antigen.


Virus-like particles (VLPs) have a structure that is similar to viruses but they cannot cause infection or illness. If VLPs are injected into the body they produce an immune response similar to that seen following infection by a virus. This means that VLPs can be used as vaccines against viruses that cause illness in people. Many drugs, named biologics, are manufactured using living cells, including cells that were originally derived from Chinese Hamster Ovaries (CHO cells). We developed a simple method to produce VLPs similar to the SARS-CoV-2 virus in CHO cells. We show that vaccination of rodents with these VLPs prevents them from becoming ill following infection with SARS-CoV-2. These VLPs could become a part of an alternative, easily produced vaccine for the prevention of COVID-19 in humans.

3.
mBio ; 11(3)2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32457241

RESUMO

The HIV-1 envelope glycoproteins (Env) undergo conformational changes upon interaction of the gp120 exterior glycoprotein with the CD4 receptor. The gp120 inner domain topological layers facilitate the transition of Env to the CD4-bound conformation. CD4 engages gp120 by introducing its phenylalanine 43 (Phe43) in a cavity ("the Phe43 cavity") located at the interface between the inner and outer gp120 domains. Small CD4-mimetic compounds (CD4mc) can bind within the Phe43 cavity and trigger conformational changes similar to those induced by CD4. Crystal structures of CD4mc in complex with a modified CRF01_AE gp120 core revealed the importance of these gp120 inner domain layers in stabilizing the Phe43 cavity and shaping the CD4 binding site. Our studies reveal a complex interplay between the gp120 inner domain and the Phe43 cavity and generate useful information for the development of more-potent CD4mc.IMPORTANCE The Phe43 cavity of HIV-1 envelope glycoproteins (Env) is an attractive druggable target. New promising compounds, including small CD4 mimetics (CD4mc), were shown to insert deeply into this cavity. Here, we identify a new network of residues that helps to shape this highly conserved CD4 binding pocket and characterize the structural determinants responsible for Env sensitivity to small CD4 mimetics.


Assuntos
Antígenos CD4/química , Proteína gp120 do Envelope de HIV/química , Fenilalanina/química , Animais , Sítios de Ligação , Biomimética , Linfócitos T CD4-Positivos/virologia , Linhagem Celular , Cristalização , Cães , Células HEK293 , HIV-1 , Humanos , Ligação Proteica , Domínios Proteicos , Timócitos
4.
J Virol ; 91(7)2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28100618

RESUMO

HIV-1-infected cells presenting envelope glycoproteins (Env) in the CD4-bound conformation on their surface are preferentially targeted by antibody-dependent cellular-mediated cytotoxicity (ADCC). HIV-1 has evolved sophisticated mechanisms to avoid the exposure of Env ADCC epitopes by downregulating CD4 and by limiting the overall amount of Env on the cell surface. In HIV-1, substitution of large residues such as histidine or tryptophan for serine 375 (S375H/W) in the gp120 Phe 43 cavity, where Phe 43 of CD4 contacts gp120, results in the spontaneous sampling of an Env conformation closer to the CD4-bound state. While residue S375 is well conserved in the majority of group M HIV-1 isolates, CRF01_AE strains have a naturally occurring histidine at this position (H375). Interestingly, CRF01_AE is the predominant circulating strain in Thailand, where the RV144 trial took place. In this trial, which resulted in a modest degree of protection, ADCC responses were identified as being part of the correlate of protection. Here we investigate the influence of the Phe 43 cavity on ADCC responses. Filling this cavity with a histidine or tryptophan residue in Env with a natural serine residue at this position (S375H/W) increased the susceptibility of HIV-1-infected cells to ADCC. Conversely, the replacement of His 375 by a serine residue (H375S) within HIV-1 CRF01_AE decreased the efficiency of the ADCC response. Our results raise the intriguing possibility that the presence of His 375 in the circulating strain where the RV144 trial was held contributed to the observed vaccine efficacy.IMPORTANCE HIV-1-infected cells presenting Env in the CD4-bound conformation on their surface are preferentially targeted by ADCC mediated by HIV-positive (HIV+) sera. Here we show that the gp120 Phe 43 cavity modulates the propensity of Env to sample this conformation and therefore affects the susceptibility of infected cells to ADCC. CRF01_AE HIV-1 strains have an unusual Phe 43 cavity-filling His 375 residue, which increases the propensity of Env to sample the CD4-bound conformation, thereby increasing susceptibility to ADCC.


Assuntos
Citotoxicidade Celular Dependente de Anticorpos , Anticorpos Anti-HIV/fisiologia , Proteína gp120 do Envelope de HIV/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Vacinas contra a AIDS/imunologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Sítios de Ligação , Sequência Consenso , Células HEK293 , Infecções por HIV/prevenção & controle , Infecções por HIV/virologia , Humanos , Ligação Proteica
5.
J Virol ; 91(4)2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-27928014

RESUMO

The envelope glycoproteins (Envs) from human immunodeficiency virus type 1 (HIV-1) mediate viral entry. The binding of the HIV-1 gp120 glycoprotein to CD4 triggers conformational changes in gp120 that allow high-affinity binding to its coreceptors. In contrast to all other Envs from the same phylogenetic group, M, which possess a serine (S) at position 375, those from CRF01_AE strains possess a histidine (H) at this location. This residue is part of the Phe43 cavity, where residue 43 of CD4 (a phenylalanine) engages with gp120. Here we evaluated the functional consequences of replacing this residue in two CRF01_AE Envs (CM244 and 92TH023) by a serine. We observed that reversion of amino acid 375 to a serine (H375S) resulted in a loss of functionality of both CRF01_AE Envs as measured by a dramatic loss in infectivity and ability to mediate cell-to-cell fusion. While no effects on processing or trimer stability of these variants were observed, decreased functionality could be linked to a major defect in CD4 binding induced by the replacement of H375 by a serine. Importantly, mutations of residues 61 (layer 1), 105 and 108 (layer 2), and 474 to 476 (layer 3) of the CRF01_AE gp120 inner domain layers to the consensus residues present in group M restored CD4 binding and wild-type levels of infectivity and cell-to-cell fusion. These results suggest a functional coevolution between the Phe43 cavity and the gp120 inner domain layers. Altogether, our observations describe the functional importance of amino acid 375H in CRF01_AE envelopes. IMPORTANCE: A highly conserved serine located at position 375 in group M is replaced by a histidine in CRF01_AE Envs. Here we show that H375 is required for efficient CRF01_AE Env binding to CD4. Moreover, this work suggests that specific residues of the gp120 inner domain layers have coevolved with H375 in order to maintain its ability to mediate viral entry.


Assuntos
Antígenos CD4/metabolismo , Proteína gp120 do Envelope de HIV/genética , Proteína gp120 do Envelope de HIV/metabolismo , Infecções por HIV/metabolismo , Infecções por HIV/virologia , HIV-1/genética , Histidina/genética , Substituição de Aminoácidos , Antígenos CD4/química , Linhagem Celular , HIV-1/classificação , Histidina/química , Humanos , Mutação , Filogenia , Ligação Proteica , Ligação Viral , Internalização do Vírus
6.
EBioMedicine ; 3: 122-134, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26870823

RESUMO

Human immunodeficiency virus type 1 (HIV-1) infection causes a progressive depletion of CD4 + T cells. Despite its importance for HIV-1 pathogenesis, the precise mechanisms underlying CD4 + T-cell depletion remain incompletely understood. Here we make the surprising observation that antibody-dependent cell-mediated cytotoxicity (ADCC) mediates the death of uninfected bystander CD4 + T cells in cultures of HIV-1-infected cells. While HIV-1-infected cells are protected from ADCC by the action of the viral Vpu and Nef proteins, uninfected bystander CD4 + T cells bind gp120 shed from productively infected cells and are efficiently recognized by ADCC-mediating antibodies. Thus, gp120 shedding represents a viral mechanism to divert ADCC responses towards uninfected bystander CD4 + T cells. Importantly, CD4-mimetic molecules redirect ADCC responses from uninfected bystander cells to HIV-1-infected cells; therefore, CD4-mimetic compounds might have therapeutic utility in new strategies aimed at specifically eliminating HIV-1-infected cells.


Assuntos
Citotoxicidade Celular Dependente de Anticorpos/imunologia , Antígenos CD4/metabolismo , Linfócitos T CD4-Positivos/fisiologia , Linfócitos T CD4-Positivos/virologia , HIV-1/fisiologia , Mimetismo Molecular , Comunicação Celular , Linhagem Celular , Proteína gp120 do Envelope de HIV/imunologia , Proteína gp120 do Envelope de HIV/metabolismo , Humanos , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...