Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 32(9): e1907063, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31975468

RESUMO

Metal-organic frameworks (MOFs) are emerging as an appealing class of highly tailorable electrically conducting materials with potential applications in optoelectronics. Yet, the realization of their proof-of-concept devices remains a daunting challenge, attributed to their poor electrical properties. Following recent work on a semiconducting Fe3 (THT)2 (NH4 )3 (THT: 2,3,6,7,10,11-triphenylenehexathiol) 2D MOF with record-high mobility and band-like charge transport, here, an Fe3 (THT)2 (NH4 )3 MOF-based photodetector operating in photoconductive mode capable of detecting a broad wavelength range from UV to NIR (400-1575 nm) is demonstrated. The narrow IR bandgap of the active layer (≈0.45 eV) constrains the performance of the photodetector at room temperature by band-to-band thermal excitation of charge carriers. At 77 K, the device performance is significantly improved; two orders of magnitude higher voltage responsivity, lower noise equivalent power, and higher specific detectivity of 7 × 108 cm Hz1/2 W-1 are achieved under 785 nm excitation. These figures of merit are retained over the analyzed spectral region (400-1575 nm) and are commensurate to those obtained with the first demonstrations of graphene- and black-phosphorus-based photodetectors. This work demonstrates the feasibility of integrating conjugated MOFs as an active element into broadband photodetectors, thus bridging the gap between materials' synthesis and technological applications.

2.
Anal Chem ; 90(13): 7837-7842, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29847936

RESUMO

A new cluster tool for in situ real-time processing and depth-resolved compositional, structural and optical characterization of thin films at temperatures from -100 to 800 °C is described. The implemented techniques comprise magnetron sputtering, ion irradiation, Rutherford backscattering spectrometry, Raman spectroscopy, and spectroscopic ellipsometry. The capability of the cluster tool is demonstrated for a layer stack MgO/amorphous Si (∼60 nm)/Ag (∼30 nm), deposited at room temperature and crystallized with partial layer exchange by heating up to 650 °C. Its initial and final composition, stacking order, and structure were monitored in situ in real time and a reaction progress was defined as a function of time and temperature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA