Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Space Sci Rev ; 219(3): 22, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37007705

RESUMO

The objective of the Psyche Magnetometry Investigation is to test the hypothesis that asteroid (16) Psyche formed from the core of a differentiated planetesimal. To address this, the Psyche Magnetometer will measure the magnetic field around the asteroid to search for evidence of remanent magnetization. Paleomagnetic measurements of meteorites and dynamo theory indicate that a diversity of planetesimals once generated dynamo magnetic fields in their metallic cores. Likewise, the detection of a strong magnetic moment ( > 2 × 10 14 Am 2 ) at Psyche would likely indicate that the body once generated a core dynamo, implying that it formed by igneous differentiation. The Psyche Magnetometer consists of two three-axis fluxgate Sensor Units (SUs) mounted 0.7 m apart along a 2.15-m long boom and connected to two Electronics Units (EUs) located within the spacecraft bus. The Magnetometer samples at up to 50 Hz, has a range of ± 80 , 000 nT , and an instrument noise of 39 pT axis - 1 3 σ integrated over 0.1 to 1 Hz. The two pairs of SUs and EUs provide redundancy and enable gradiometry measurements to suppress noise from flight system magnetic fields. The Magnetometer will be powered on soon after launch and acquire data for the full duration of the mission. The ground data system processes the Magnetometer measurements to obtain an estimate of Psyche's dipole moment.

2.
Space Sci Rev ; 218(3): 17, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35431348

RESUMO

The asteroid (16) Psyche may be the metal-rich remnant of a differentiated planetesimal, or it may be a highly reduced, metal-rich asteroidal material that never differentiated. The NASA Psyche mission aims to determine Psyche's provenance. Here we describe the possible solar system regions of origin for Psyche, prior to its likely implantation into the asteroid belt, the physical and chemical processes that can enrich metal in an asteroid, and possible meteoritic analogs. The spacecraft payload is designed to be able to discriminate among possible formation theories. The project will determine Psyche's origin and formation by measuring any strong remanent magnetic fields, which would imply it was the core of a differentiated body; the scale of metal to silicate mixing will be determined by both the neutron spectrometers and the filtered images; the degree of disruption between metal and rock may be determined by the correlation of gravity with composition; some mineralogy (e.g., modeled silicate/metal ratio, and inferred existence of low-calcium pyroxene or olivine, for example) will be detected using filtered images; and the nickel content of Psyche's metal phase will be measured using the GRNS.

3.
Sensors (Basel) ; 21(9)2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33925157

RESUMO

We report the development of a new type of space lidar specifically designed for missions to small planetary bodies for both topographic mapping and support of sample collection or landing. The instrument is designed to have a wide dynamic range with several operation modes for different mission phases. The laser transmitter consists of a fiber laser that is intensity modulated with a return-to-zero pseudo-noise (RZPN) code. The receiver detects the coded pulse-train by correlating the detected signal with the RZPN kernel. Unlike regular pseudo noise (PN) lidars, the RZPN kernel is set to zero outside laser firing windows, which removes most of the background noise over the receiver integration time. This technique enables the use of low peak-power but high pulse-rate lasers, such as fiber lasers, for long-distance ranging without aliasing. The laser power and the internal gain of the detector can both be adjusted to give a wide measurement dynamic range. The laser modulation code pattern can also be reconfigured in orbit to optimize measurements to different measurement environments. The receiver uses a multi-pixel linear mode photon-counting HgCdTe avalanche photodiode (APD) array with near quantum limited sensitivity at near to mid infrared wavelengths where many fiber lasers and diode lasers operate. The instrument is modular and versatile and can be built mostly with components developed by the optical communication industry.

4.
Geobiology ; 19(3): 307-321, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33565260

RESUMO

Advances in origins of life research and prebiotic chemistry suggest that life as we know it may have emerged from an earlier RNA World. However, it has been difficult to reconcile the conditions used in laboratory experiments with real-world geochemical environments that may have existed on the early Earth and hosted the origin(s) of life. This challenge is due to geologic resurfacing and recycling that have erased the overwhelming majority of the Earth's prebiotic history. We therefore propose that Mars, a planet frozen in time, comprised of many surfaces that have remained relatively unchanged since their formation > 4 Gya, is the best alternative to search for environments consistent with geochemical requirements imposed by the RNA world. In this study, we synthesize in situ and orbital observations of Mars and modeling of its early atmosphere into solutions containing a range of pHs and concentrations of prebiotically relevant metals (Fe2+ , Mg2+ , and Mn2+ ) spanning various candidate aqueous environments. We then experimentally determine RNA degradation kinetics due to metal-catalyzed hydrolysis (cleavage) and evaluate whether early Mars could have been permissive toward the accumulation of long-lived RNA polymers. Our results indicate that a Mg2+ -rich basalt sourcing metals to a slightly acidic (pH 5.4) environment mediates the slowest rates of RNA cleavage, though geologic evidence and basalt weathering models suggest aquifers on Mars would be near neutral (pH ~ 7). Moreover, the early onset of oxidizing conditions on Mars has major consequences regarding the availability of oxygen-sensitive metals (i.e., Fe2+ and Mn2+ ) due to increased RNA degradation rates and precipitation. Overall, (a) low pH decreases RNA cleavage at high metal concentrations; (b) acidic to neutral pH environments with Fe2+ or Mn2+ cleave more RNA than Mg2+ ; and (c) alkaline environments with Mg2+ dramatically cleaves more RNA while precipitates were observed for Fe2+ and Mn2+ .


Assuntos
Meio Ambiente Extraterreno , Marte , Planeta Terra , Geologia , RNA
5.
NPJ Microgravity ; 6: 24, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32964110

RESUMO

Nanopore sequencing, as represented by Oxford Nanopore Technologies' MinION, is a promising technology for in situ life detection and for microbial monitoring including in support of human space exploration, due to its small size, low mass (~100 g) and low power (~1 W). Now ubiquitous on Earth and previously demonstrated on the International Space Station (ISS), nanopore sequencing involves translocation of DNA through a biological nanopore on timescales of milliseconds per base. Nanopore sequencing is now being done in both controlled lab settings as well as in diverse environments that include ground, air, and space vehicles. Future space missions may also utilize nanopore sequencing in reduced gravity environments, such as in the search for life on Mars (Earth-relative gravito-inertial acceleration (GIA) g = 0.378), or at icy moons such as Europa (g = 0.134) or Enceladus (g = 0.012). We confirm the ability to sequence at Mars as well as near Europa or Lunar (g = 0.166) and lower g levels, demonstrate the functionality of updated chemistry and sequencing protocols under parabolic flight, and reveal consistent performance across g level, during dynamic accelerations, and despite vibrations with significant power at translocation-relevant frequencies. Our work strengthens the use case for nanopore sequencing in dynamic environments on Earth and in space, including as part of the search for nucleic-acid based life beyond Earth.

6.
Front Microbiol ; 11: 515319, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33505359

RESUMO

Enterococcus faecalis is a multidrug resistant, opportunistic human pathogen and a leading cause of hospital acquired infections. Recently, isolates have been recovered from the air and surfaces onboard the International Space Station (ISS). Pangenomic and functional analyses were carried out to assess their potential impact on astronaut health. Genomes of each ISS isolate, and both clinical and commensal reference strains, were evaluated for their core and unique gene content, acquired antibiotic resistance genes, phage, plasmid content, and virulence traits. In order to determine their potential survival when outside of the human host, isolates were also challenged with three weeks of desiccation at 30% relative humidity. Finally, pathogenicity of the ISS strains was evaluated in the model organism Caenorhabditis elegans. At the culmination of this study, there were no defining signatures that separated known pathogenic strains from the more commensal phenotypes using the currently available resources. As a result, the current reliance on database information alone must be shifted to experimentally evaluated genotypic and phenotypic characteristics of clinically relevant microorganisms.

7.
Appl Opt ; 58(33): 9259-9266, 2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31873605

RESUMO

A set of small and lightweight laser retro-reflector arrays (LRAs) was fabricated and tested for use on lunar landers under NASA's Commercial Lunar Payload Service program. Each array contains eight 1.27-cm-diameter corner cube retro-reflectors mounted on a dome-shaped aluminum structure. The arrays are 5.0 cm in diameter at the base, 1.6 cm in height, and 20 g in mass. They can be tracked by an orbiting laser altimeter, such as the Lunar Orbiter Laser Altimeter, from a distance of a few hundred kilometers or by a landing lidar on future lunar landers. The LRAs demonstrated a diffraction-limited optical performance. They were designed and tested to survive and function on the Moon for decades, well after the lander missions are completed.

8.
Geophys Res Lett ; 46(7): 3625-3633, 2019 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-31359894

RESUMO

Geodetic analysis of radio tracking measurements of the MESSENGER spacecraft while in orbit about Mercury has yielded new estimates for the planet's gravity field, tidal Love number, and pole coordinates. The derived right ascension (α = 281.0082° ± 0.0009°; all uncertainties are 3 standard deviations) and declination (δ =61.4164° ± 0.0003°) of the spin pole place Mercury in the Cassini state. Confirmation of the equilibrium state with an estimated mean (whole-planet) obliquity ϵ of 1.968 ± 0.027 arcmin enables the confident determination of the planet's normalized polar moment of inertia (0.333 ± 0.005), which indicates a high degree of internal differentiation. Internal structure models generated by a Markov-Chain Monte Carlo process and consistent with the geodetic constraints possess a solid inner core with a radius (r ic ) between 0.3 and 0.7 that of the outer core (r oc ).

9.
Astrobiology ; 19(9): 1139-1152, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31204862

RESUMO

Recent studies regarding the origins of life and Mars-Earth meteorite transfer simulations suggest that biological informational polymers, such as nucleic acids (DNA and RNA), have the potential to provide unambiguous evidence of life on Mars. To this end, we are developing a metagenomics-based life-detection instrument which integrates nucleic acid extraction and nanopore sequencing: the Search for Extra-Terrestrial Genomes (SETG). Our goal is to isolate and sequence nucleic acids from extant or preserved life on Mars in order to determine if a particular genetic sequence (1) is distantly related to life on Earth, indicating a shared ancestry due to lithological exchange, or (2) is unrelated to life on Earth, suggesting convergent origins of life on Mars. In this study, we validate prior work on nucleic acid extraction from cells deposited in Mars analog soils down to microbial concentrations (i.e., 104 cells in 50 mg of soil) observed in the driest and coldest regions on Earth. In addition, we report low-input nanopore sequencing results from 2 pg of purified Bacillus subtilis spore DNA simulating ideal extraction yields equivalent to 1 ppb life-detection sensitivity. We achieve this by employing carrier sequencing, a method of sequencing sub-nanogram DNA in the background of a genomic carrier. After filtering of carrier, low-quality, and low-complexity reads we detected 5 B. subtilis reads, 18 contamination reads (including Homo sapiens), and 6 high-quality noise reads believed to be sequencing artifacts.


Assuntos
Biomassa , Exobiologia/métodos , Marte , Ácidos Nucleicos/isolamento & purificação , Análise de Sequência de DNA , Solo/química , DNA/análise , DNA/isolamento & purificação , Humanos , Sequenciamento por Nanoporos , Esporos Bacterianos/genética , Água/química
10.
NPJ Microgravity ; 4: 14, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30109261

RESUMO

Parabolic flights provide cost-effective, time-limited access to "weightless" or reduced gravity conditions, facilitating research and validation activities that complement infrequent and costly access to space. Although parabolic flights have been conducted for decades, reference acceleration profiles and processing methods are not widely available. Here we present a solution for collecting, analyzing, and classifying the altered gravity environments experienced during parabolic flights, which we validated during a Boeing 727-200F flight with 20 parabolas. All data and analysis code are freely available. Our solution can be integrated with diverse experimental designs, does not depend upon accelerometer orientation, and allows unsupervised classification of all phases of flight, providing a consistent and open-source approach to quantifying gravito-inertial accelerations (GIA), or g levels. As academic, governmental, and commercial use of space advances, data availability and validated processing methods will enable better planning, execution, and analysis of parabolic flight experiments, and thus facilitate future space activities.

11.
Life Sci Space Res (Amst) ; 18: 80-86, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30100151

RESUMO

The detection of extant life is a major focus of many planned future planetary missions, a current challenge of which is the ability to target biomarkers capable of providing unambiguous evidence of life. DNA sequencing is increasingly recognized as a powerful tool for life detection for planetary exploration missions; beyond use of sequence information to determine the origins of the sample (e.g., extant life or forward contamination), recent advances in the field have enabled interrogation of single molecules, with or without amplification. The focus of this work is on failure modes, specifically the issues encountered when there is no-to-low input DNA into a sequencing device, and the potential for the generation of sequencing artifacts that could be interpreted as a false positive. Using Oxford Nanopore Technologies (ONT) MinION, we assess whether single molecule sequencing, involving no amplification, generates noise signals that could be misinterpreted in the context of a planetary exploration mission, and also whether the ability of the instrument to handle these types of situations could make it feasible for clean room monitoring. Utilizing quality score filtering techniques in place at the time of this experiment, runs containing only initial flowcell chemistry and/or library reagents generated 5 passing reads out of a total of 3568 measured reads, and contained estimated sequences with low complexity that did not map to the NCBI database. The noise characteristics in all instances suggest that quality thresholds were appropriately chosen by ONT: new chemistry and basecalling workflows have shown further suppression of noise sources, which completely mitigate the generation of spurious reads.


Assuntos
Algoritmos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Nanoporos , Planetas , Análise de Sequência de DNA/instrumentação , Sequenciamento de Nucleotídeos em Larga Escala/instrumentação , Humanos , Software
12.
Icarus ; 310: 1-20, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29755136

RESUMO

The Orientale basin is the youngest and best-preserved multiring impact basin on the Moon, having experienced only modest modification by subsequent impacts and volcanism. Orientale is often treated as the type example of a multiring basin, with three prominent rings outside of the inner depression: the Inner Rook Montes, the Outer Rook Montes, and the Cordillera. Here we use gravity data from NASA's Gravity Recovery and Interior Laboratory (GRAIL) mission to reveal the subsurface structure of Orientale and its ring system. Gradients of the gravity data reveal a continuous ring dike intruded into the Outer Rook along the plane of the fault associated with the ring scarp. The volume of this ring dike is ~18 times greater than the volume of all extrusive mare deposits associated with the basin. The gravity gradient signature of the Cordillera ring indicates an offset along the fault across a shallow density interface, interpreted to be the base of the low-density ejecta blanket. Both gravity gradients and crustal thickness models indicate that the edge of the central cavity is shifted inward relative to the equivalent Inner Rook ring at the surface. Models of the deep basin structure show inflections along the crust-mantle interface at both the Outer Rook and Cordillera rings, indicating that the basin ring faults extend from the surface to at least the base of the crust. Fault dips range from 13-22° for the Cordillera fault in the northeastern quadrant, to 90° for the Outer Rook in the northwestern quadrant. The fault dips for both outer rings are lowest in the northeast, possibly due to the effects of either the direction of projectile motion or regional gradients in pre-impact crustal thickness. Similar ring dikes and ring faults are observed around the majority of lunar basins.

13.
Planet Space Sci ; 153: 127-133, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29773922

RESUMO

The scale of the solar system is slowly changing, likely increasing as a result of solar mass loss, with additional change possible if there is a secular variation of the gravitational constant, G. The measurement of the change of scale could provide insight into the past and the future of the solar system, and in addition a better understanding of planetary motion and fundamental physics. Estimates for the expansion of the scale of the solar system are of order 1.5 cm year-1 AU-1, which over several years is an observable quantity with present-day laser ranging systems. This estimate suggests that laser measurements between planets could provide an accurate estimate of the solar system expansion rate. We examine distance measurements between three bodies in the inner solar system -- Earth's Moon, Mars and Venus -- and outline a mission concept for making the measurements. The concept involves placing spacecraft that carry laser ranging transponders in orbit around each body and measuring the distances between the three spacecraft over a period of several years. The analysis of these range measurements would allow the co-estimation of the spacecraft orbit, planetary ephemerides, other geophysical parameters related to the constitution and dynamics of the central bodies, and key geodetic parameters related to the solar system expansion, the Sun, and theoretical physics.

14.
BMC Bioinformatics ; 19(1): 108, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29587645

RESUMO

BACKGROUND: Long-read nanopore sequencing technology is of particular significance for taxonomic identification at or below the species level. For many environmental samples, the total extractable DNA is far below the current input requirements of nanopore sequencing, preventing "sample to sequence" metagenomics from low-biomass or recalcitrant samples. RESULTS: Here we address this problem by employing carrier sequencing, a method to sequence low-input DNA by preparing the target DNA with a genomic carrier to achieve ideal library preparation and sequencing stoichiometry without amplification. We then use CarrierSeq, a sequence analysis workflow to identify the low-input target reads from the genomic carrier. We tested CarrierSeq experimentally by sequencing from a combination of 0.2 ng Bacillus subtilis ATCC 6633 DNA in a background of 1000 ng Enterobacteria phage λ DNA. After filtering of carrier, low quality, and low complexity reads, we detected target reads (B. subtilis), contamination reads, and "high quality noise reads" (HQNRs) not mapping to the carrier, target or known lab contaminants. These reads appear to be artifacts of the nanopore sequencing process as they are associated with specific channels (pores). CONCLUSION: By treating sequencing as a Poisson arrival process, we implement a statistical test to reject data from channels dominated by HQNRs while retaining low-input target reads.


Assuntos
Nanoporos , Análise de Sequência de DNA/métodos , Software , Fluxo de Trabalho , Bacillus subtilis/genética , Curva ROC
15.
Nature ; 555(7698): 592-591, 2018 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-29595798
16.
Nat Commun ; 9(1): 289, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29348613

RESUMO

The NASA MESSENGER mission explored the innermost planet of the solar system and obtained a rich data set of range measurements for the determination of Mercury's ephemeris. Here we use these precise data collected over 7 years to estimate parameters related to general relativity and the evolution of the Sun. These results confirm the validity of the strong equivalence principle with a significantly refined uncertainty of the Nordtvedt parameter η = (-6.6 ± 7.2) × 10-5. By assuming a metric theory of gravitation, we retrieved the post-Newtonian parameter ß = 1 + (-1.6 ± 1.8) × 10-5 and the Sun's gravitational oblateness, [Formula: see text] = (2.246 ± 0.022) × 10-7. Finally, we obtain an estimate of the time variation of the Sun gravitational parameter, [Formula: see text] = (-6.13 ± 1.47) × 10-14, which is consistent with the expected solar mass loss due to the solar wind and interior processes. This measurement allows us to constrain [Formula: see text] to be <4 × 10-14 per year.

17.
Nature ; 555(7698): 590-591, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32099150
18.
Planet Space Sci ; 162: 2-19, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30880841

RESUMO

The Lunar Reconnaissance Orbiter (LRO) has been orbiting the Moon since 2009, obtaining unique and foundational datasets important to understanding the evolution of the Moon and the Solar System. The high-resolution data acquired by LRO benefit from precise orbit determination (OD), limiting the need for geolocation and co-registration tasks. The initial position knowledge requirement (50 meters) was met with radio tracking from ground stations, after combination with LOLA altimetric crossovers. LRO-specific gravity field solutions were determined and allowed radio-only OD to perform at the level of 20 meters, although secular inclination changes required frequent updates. The high-accuracy gravity fields from GRAIL, with <10 km spatial resolution, further improved the radio-only orbit reconstruction quality (<10 meters). However, orbit reconstruction is in part limited by the 0.3-0.5 mm/s measurement noise level in S-band tracking. One-way tracking through Laser Ranging can supplement the tracking available for OD with 28-Hz ranges with 20-cm single-shot precision, but is available only on the nearside (the lunar hemisphere facing the Earth due to tidal locking). Here, we report on the status of the OD effort since the beginning of the mission, a period spanning more than seven years. We describe modeling improvements and the use of new measurements. In particular, the LOLA altimetric data give accurate, uniform, and independent information about LRO's orbit, with a different sensitivity and geometry which includes coverage over the lunar farside and is not tied to ground-based assets. With SLDEM2015 (a combination of the LOLA topographic profiles and the Kaguya Terrain Camera stereo images), another use of altimetry is possible for OD. We extend the 'direct altimetry' technique developed for the ICESat mission to perform OD and adjust spacecraft position to minimize discrepancies between LOLA tracks and SLDEM2015. Comparisons with the radio-only orbits are used to evaluate this new tracking type, of interest for the OD of future lunar orbiters carrying a laser altimeter. LROC NAC images also provide independent accuracy estimation, through the repeated views taken of anthropogenic features for instance.

19.
Front Microbiol ; 8: 1819, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29018418

RESUMO

Life can persist under severe osmotic stress and low water activity in hypersaline environments. On Mars, evidence for the past presence of saline bodies of water is prevalent and resulted in the widespread deposition of sulfate and chloride salts. Here we investigate Spotted Lake (British Columbia, Canada), a hypersaline lake with extreme (>3 M) levels of sulfate salts as an exemplar of the conditions thought to be associated with ancient Mars. We provide the first characterization of microbial structure in Spotted Lake sediments through metagenomic sequencing, and report a bacteria-dominated community with abundant Proteobacteria, Firmicutes, and Bacteroidetes, as well as diverse extremophiles. Microbial abundance and functional comparisons reveal similarities to Ace Lake, a meromictic Antarctic lake with anoxic and sulfidic bottom waters. Our analysis suggests that hypersaline-associated species occupy niches characterized foremost by differential abundance of Archaea, uncharacterized Bacteria, and Cyanobacteria. Potential biosignatures in this environment are discussed, specifically the likelihood of a strong sulfur isotopic fractionation record within the sediments due to the presence of sulfate reducing bacteria. With its high sulfate levels and seasonal freeze-thaw cycles, Spotted Lake is an analog for ancient paleolakes on Mars in which sulfate salt deposits may have offered periodically habitable environments, and could have concentrated and preserved organic materials or their biomarkers over geologic time.

20.
Astrobiology ; 17(8): 747-760, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28704064

RESUMO

Biological informational polymers such as nucleic acids have the potential to provide unambiguous evidence of life beyond Earth. To this end, we are developing an automated in situ life-detection instrument that integrates nucleic acid extraction and nanopore sequencing: the Search for Extra-Terrestrial Genomes (SETG) instrument. Our goal is to isolate and determine the sequence of nucleic acids from extant or preserved life on Mars, if, for example, there is common ancestry to life on Mars and Earth. As is true of metagenomic analysis of terrestrial environmental samples, the SETG instrument must isolate nucleic acids from crude samples and then determine the DNA sequence of the unknown nucleic acids. Our initial DNA extraction experiments resulted in low to undetectable amounts of DNA due to soil chemistry-dependent soil-DNA interactions, namely adsorption to mineral surfaces, binding to divalent/trivalent cations, destruction by iron redox cycling, and acidic conditions. Subsequently, we developed soil-specific extraction protocols that increase DNA yields through a combination of desalting, utilization of competitive binders, and promotion of anaerobic conditions. Our results suggest that a combination of desalting and utilizing competitive binders may establish a "universal" nucleic acid extraction protocol suitable for analyzing samples from diverse soils on Mars. Key Words: Life-detection instruments-Nucleic acids-Mars-Panspermia. Astrobiology 17, 747-760.


Assuntos
Exobiologia , Ácidos Nucleicos/isolamento & purificação , Solo , Planeta Terra , Meio Ambiente Extraterreno , Marte
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...