Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 33(23): 5071-5084.e7, 2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-37977140

RESUMO

Cell walls are important interfaces of plant-fungal interactions, acting as robust physical and chemical barriers against invaders. Upon fungal colonization, plants deposit phenolics and callose at the sites of fungal penetration to prevent further fungal progression. Alterations in the composition of plant cell walls significantly impact host susceptibility. Furthermore, plants and fungi secrete glycan hydrolases acting on each other's cell walls. These enzymes release various sugar oligomers into the apoplast, some of which activate host immunity via surface receptors. Recent characterization of cell walls from plant-colonizing fungi has emphasized the abundance of ß-glucans in different cell wall layers, which makes them suitable targets for recognition. To characterize host components involved in immunity against fungi, we performed a protein pull-down with the biotinylated ß-glucan laminarin. Thereby, we identified a plant glycoside hydrolase family 81-type glucan-binding protein (GBP) as a ß-glucan interactor. Mutation of GBP1 and its only paralog, GBP2, in barley led to decreased colonization by the beneficial root endophytes Serendipita indica and S. vermifera, as well as the arbuscular mycorrhizal fungus Rhizophagus irregularis. The reduction of colonization was accompanied by enhanced responses at the host cell wall, including an extension of callose-containing cell wall appositions. Moreover, GBP mutation in barley also reduced fungal biomass in roots by the hemibiotrophic pathogen Bipolaris sorokiniana and inhibited the penetration success of the obligate biotrophic leaf pathogen Blumeria hordei. These results indicate that GBP1 is involved in the establishment of symbiotic associations with beneficial fungi-a role that has potentially been appropriated by barley-adapted pathogens.


Assuntos
Hordeum , Micorrizas , beta-Glucanas , Hordeum/metabolismo , Simbiose/fisiologia , Fungos , Micorrizas/fisiologia , Plantas , beta-Glucanas/metabolismo , Raízes de Plantas/metabolismo
2.
Nat Aging ; 3(11): 1345-1357, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37783816

RESUMO

In humans, aggregation of polyglutamine repeat (polyQ) proteins causes disorders such as Huntington's disease. Although plants express hundreds of polyQ-containing proteins, no pathologies arising from polyQ aggregation have been reported. To investigate this phenomenon, we expressed an aggregation-prone fragment of human huntingtin (HTT) with an expanded polyQ stretch (Q69) in Arabidopsis thaliana plants. In contrast to animal models, we find that Arabidopsis sp. suppresses Q69 aggregation through chloroplast proteostasis. Inhibition of chloroplast proteostasis diminishes the capacity of plants to prevent cytosolic Q69 aggregation. Moreover, endogenous polyQ-containing proteins also aggregate on chloroplast dysfunction. We find that Q69 interacts with the chloroplast stromal processing peptidase (SPP). Synthetic Arabidopsis SPP prevents polyQ-expanded HTT aggregation in human cells. Likewise, ectopic SPP expression in Caenorhabditis elegans reduces neuronal Q67 aggregation and subsequent neurotoxicity. Our findings suggest that synthetic plant proteins, such as SPP, hold therapeutic potential for polyQ disorders and other age-related diseases involving protein aggregation.


Assuntos
Arabidopsis , Agregados Proteicos , Animais , Humanos , Arabidopsis/genética , Peptídeos/genética , Neurônios/metabolismo , Caenorhabditis elegans/genética
3.
PLoS Biol ; 21(5): e3002127, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37200394

RESUMO

Receptors that distinguish the multitude of microbes surrounding plants in the environment enable dynamic responses to the biotic and abiotic conditions encountered. In this study, we identify and characterise a glycan receptor kinase, EPR3a, closely related to the exopolysaccharide receptor EPR3. Epr3a is up-regulated in roots colonised by arbuscular mycorrhizal (AM) fungi and is able to bind glucans with a branching pattern characteristic of surface-exposed fungal glucans. Expression studies with cellular resolution show localised activation of the Epr3a promoter in cortical root cells containing arbuscules. Fungal infection and intracellular arbuscule formation are reduced in epr3a mutants. In vitro, the EPR3a ectodomain binds cell wall glucans in affinity gel electrophoresis assays. In microscale thermophoresis (MST) assays, rhizobial exopolysaccharide binding is detected with affinities comparable to those observed for EPR3, and both EPR3a and EPR3 bind a well-defined ß-1,3/ß-1,6 decasaccharide derived from exopolysaccharides of endophytic and pathogenic fungi. Both EPR3a and EPR3 function in the intracellular accommodation of microbes. However, contrasting expression patterns and divergent ligand affinities result in distinct functions in AM colonisation and rhizobial infection in Lotus japonicus. The presence of Epr3a and Epr3 genes in both eudicot and monocot plant genomes suggest a conserved function of these receptor kinases in glycan perception.


Assuntos
Lotus , Micorrizas , Rhizobium , Micorrizas/genética , Lotus/genética , Lotus/metabolismo , Lotus/microbiologia , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/metabolismo , Nódulos Radiculares de Plantas/microbiologia , Rhizobium/metabolismo , Raízes de Plantas/metabolismo , Mutação , Simbiose/genética , Fosfotransferases/metabolismo , Polissacarídeos/metabolismo , Glucanos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
4.
Curr Opin Plant Biol ; 67: 102226, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35526366

RESUMO

Plant-fungal interactions in the soil crucially impact crop productivity and can range from highly beneficial to detrimental. Accumulating evidence suggests that some root-colonizing fungi shift between endophytic and pathogenic behaviour depending on the host species and that combinations of effector proteins collectively shape the fungal lifestyle on a given plant. In this review we discuss recent advances in our understanding of how fungal infection strategies on roots can lead to contrasting outcomes for the host. We highlight functional similarities and differences in compatibility determinants that control the colonization of specific-cell layers within plant roots, ultimately shaping the continuum between endophytic and pathogenic lifestyle.


Assuntos
Fungos , Rizosfera , Endófitos , Raízes de Plantas/microbiologia , Microbiologia do Solo
5.
Methods Mol Biol ; 2447: 175-183, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35583781

RESUMO

Cell death in plants plays a major role during development as well as in response to certain biotic and abiotic stresses. For example, plant cell death can be triggered in a tightly regulated way during the hypersensitive response (HR) in defense against pathogens or be elicited by pathogenic toxin deployment. Monitoring cell death and its impact on plant health can aid in the quantification of plant disease symptoms and help to identify the underlying molecular pathways. Here, we describe our current protocol for monitoring plant cell death via ion leakage and Pulse-Amplitude-Modulation (PAM) fluorometry. We further provide a detailed protocol for the sample preparation, the measurement, and the data evaluation and discuss the complementary nature of ion leakage and PAM fluorometry as well as the potential of PAM fluorometry for high-throughput screenings.


Assuntos
Fluorometria , Morte Celular , Fluorometria/métodos
6.
Plant Cell ; 34(7): 2765-2784, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35441693

RESUMO

Plant pathogenic and beneficial fungi have evolved several strategies to evade immunity and cope with host-derived hydrolytic enzymes and oxidative stress in the apoplast, the extracellular space of plant tissues. Fungal hyphae are surrounded by an inner insoluble cell wall layer and an outer soluble extracellular polysaccharide (EPS) matrix. Here, we show by proteomics and glycomics that these two layers have distinct protein and carbohydrate signatures, and hence likely have different biological functions. The barley (Hordeum vulgare) ß-1,3-endoglucanase HvBGLUII, which belongs to the widely distributed apoplastic glycoside hydrolase 17 family (GH17), releases a conserved ß-1,3;1,6-glucan decasaccharide (ß-GD) from the EPS matrices of fungi with different lifestyles and taxonomic positions. This low molecular weight ß-GD does not activate plant immunity, is resilient to further enzymatic hydrolysis by ß-1,3-endoglucanases due to the presence of three ß-1,6-linked glucose branches and can scavenge reactive oxygen species. Exogenous application of ß-GD leads to enhanced fungal colonization in barley, confirming its role in the fungal counter-defensive strategy to subvert host immunity. Our data highlight the hitherto undescribed capacity of this often-overlooked EPS matrix from plant-associated fungi to act as an outer protective barrier important for fungal accommodation within the hostile environment at the apoplastic plant-microbe interface.


Assuntos
Celulase , Hordeum , beta-Glucanas , Celulase/metabolismo , Fungos , Hordeum/metabolismo , Imunidade Vegetal , Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , beta-Glucanas/metabolismo
7.
ISME J ; 16(3): 876-889, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34686763

RESUMO

Plant root-associated bacteria can confer protection against pathogen infection. By contrast, the beneficial effects of root endophytic fungi and their synergistic interactions with bacteria remain poorly defined. We demonstrate that the combined action of a fungal root endophyte from a widespread taxon with core bacterial microbiota members provides synergistic protection against an aggressive soil-borne pathogen in Arabidopsis thaliana and barley. We additionally reveal early inter-kingdom growth promotion benefits which are host and microbiota composition dependent. Using RNA-sequencing, we show that these beneficial activities are not associated with extensive host transcriptional reprogramming but rather with the modulation of expression of microbial effectors and carbohydrate-active enzymes.


Assuntos
Arabidopsis , Hordeum , Microbiota , Arabidopsis/microbiologia , Basidiomycota , Endófitos/genética , Raízes de Plantas/microbiologia
8.
Carbohydr Polym ; 277: 118839, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34893256

RESUMO

Lipopolysaccharides, the major outer membrane components of Gram-negative bacteria, are crucial actors of the host-microbial dialogue. They can contribute to the establishment of either symbiosis or bacterial virulence, depending on the bacterial lifestyle. Plant microbiota shows great complexity, promotes plant health and growth and assures protection from pathogens. How plants perceive LPS from plant-associated bacteria and discriminate between beneficial and pathogenic microbes is an open and urgent question. Here, we report on the structure, conformation, membrane properties and immune recognition of LPS isolated from the Arabidopsis thaliana root microbiota member Herbaspirillum sp. Root189. The LPS consists of an O-methylated and variously acetylated D-rhamnose containing polysaccharide with a rather hydrophobic surface. Plant immunology studies in A. thaliana demonstrate that the native acetylated O-antigen shields the LPS from immune recognition whereas the O-deacylated one does not. These findings highlight the role of Herbaspirillum LPS within plant-microbial crosstalk, and how O-antigen modifications influence membrane properties and modulate LPS host recognition.


Assuntos
Arabidopsis/química , Herbaspirillum/imunologia , Lipopolissacarídeos/imunologia , Antígenos O/imunologia , Raízes de Plantas/química , Arabidopsis/imunologia , Arabidopsis/microbiologia , Lipopolissacarídeos/química , Lipopolissacarídeos/isolamento & purificação , Antígenos O/química , Antígenos O/isolamento & purificação , Raízes de Plantas/imunologia , Raízes de Plantas/microbiologia
9.
Aging Cell ; 20(8): e13446, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34327811

RESUMO

The biological purpose of plant stem cells is to maintain themselves while providing new pools of differentiated cells that form organs and rejuvenate or replace damaged tissues. Protein homeostasis or proteostasis is required for cell function and viability. However, the link between proteostasis and plant stem cell identity remains unknown. In contrast to their differentiated counterparts, we find that root stem cells can prevent the accumulation of aggregated proteins even under proteotoxic stress conditions such as heat stress or proteasome inhibition. Notably, root stem cells exhibit enhanced expression of distinct chaperones that maintain proteome integrity. Particularly, intrinsic high levels of the T-complex protein-1 ring complex/chaperonin containing TCP1 (TRiC/CCT) complex determine stem cell maintenance and their remarkable ability to suppress protein aggregation. Overexpression of CCT8, a key activator of TRiC/CCT assembly, is sufficient to ameliorate protein aggregation in differentiated cells and confer resistance to proteotoxic stress in plants. Taken together, our results indicate that enhanced proteostasis mechanisms in stem cells could be an important requirement for plants to persist under extreme environmental conditions and reach extreme long ages. Thus, proteostasis of stem cells can provide insights to design and breed plants tolerant to environmental challenges caused by the climate change.


Assuntos
Chaperonas Moleculares/genética , Agregados Proteicos/genética , Proteostase/genética , Células-Tronco/metabolismo , Arabidopsis , Diferenciação Celular
10.
Mol Plant Microbe Interact ; 34(5): 461, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34138639

RESUMO

Plants live in a world filled with microbes, and spend their lives engaged in the delicate dance of nurturing beneficial interactions while simultaneously reducing disease-causing interactions. How do plants engage with beneficial microorganisms while at the same time restricting pathogens? was recently selected in a crowd-sourced effort as the top, unanswered question in the field of molecular plant-microbe interactions. Elaborating on this question and setting the stage for this focus issue, the Top10 review by Thoms, Liang and Haney examines the way multiple inputs are integrated to initiate programs of immunity or mutualistic symbiosis, and how this shapes the microbiome. This comprehensive review describes the current landscape of the field, focusing on the plant-microbe-soil continuum, but providing ideas for extending these concepts to leaves, where much of the research on immunity has centered. Other papers in this issue examine the simultaneous interaction of plants with beneficial and pathogenic microorganisms, as well as many diverse relationships with beneficial microbes that can improve plant health by increasing access to nutrients or by decreasing disease.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Assuntos
Microbiota , Plantas , Solo , Simbiose
11.
J Exp Bot ; 72(1): 15-35, 2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-32929496

RESUMO

To defend against microbial invaders but also to establish symbiotic programs, plants need to detect the presence of microbes through the perception of molecular signatures characteristic of a whole class of microbes. Among these molecular signatures, extracellular glycans represent a structurally complex and diverse group of biomolecules that has a pivotal role in the molecular dialog between plants and microbes. Secreted glycans and glycoconjugates such as symbiotic lipochitooligosaccharides or immunosuppressive cyclic ß-glucans act as microbial messengers that prepare the ground for host colonization. On the other hand, microbial cell surface glycans are important indicators of microbial presence. They are conserved structures normally exposed and thus accessible for plant hydrolytic enzymes and cell surface receptor proteins. While the immunogenic potential of bacterial cell surface glycoconjugates such as lipopolysaccharides and peptidoglycan has been intensively studied in the past years, perception of cell surface glycans from filamentous microbes such as fungi or oomycetes is still largely unexplored. To date, only few studies have focused on the role of fungal-derived cell surface glycans other than chitin, highlighting a knowledge gap that needs to be addressed. The objective of this review is to give an overview on the biological functions and perception of microbial extracellular glycans, primarily focusing on their recognition and their contribution to plant-microbe interactions.


Assuntos
Oomicetos , Açúcares , Fungos , Plantas , Polissacarídeos , Simbiose
12.
PLoS Pathog ; 16(6): e1008652, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32574207

RESUMO

Plants trigger immune responses upon recognition of fungal cell wall chitin, followed by the release of various antimicrobials, including chitinase enzymes that hydrolyze chitin. In turn, many fungal pathogens secrete LysM effectors that prevent chitin recognition by the host through scavenging of chitin oligomers. We previously showed that intrachain LysM dimerization of the Cladosporium fulvum effector Ecp6 confers an ultrahigh-affinity binding groove that competitively sequesters chitin oligomers from host immune receptors. Additionally, particular LysM effectors are found to protect fungal hyphae against chitinase hydrolysis during host colonization. However, the molecular basis for the protection of fungal cell walls against hydrolysis remained unclear. Here, we determined a crystal structure of the single LysM domain-containing effector Mg1LysM of the wheat pathogen Zymoseptoria tritici and reveal that Mg1LysM is involved in the formation of two kinds of dimers; a chitin-dependent dimer as well as a chitin-independent homodimer. In this manner, Mg1LysM gains the capacity to form a supramolecular structure by chitin-induced oligomerization of chitin-independent Mg1LysM homodimers, a property that confers protection to fungal cell walls against host chitinases.


Assuntos
Ascomicetos/química , Quitina/química , Proteínas Fúngicas/química , Hifas/química , Multimerização Proteica , Ascomicetos/genética , Ascomicetos/metabolismo , Quitina/genética , Quitina/metabolismo , Cladosporium/química , Cladosporium/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hifas/genética , Hifas/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Estrutura Quaternária de Proteína , Triticum/genética , Triticum/metabolismo , Triticum/microbiologia
14.
New Phytol ; 227(4): 1174-1188, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32285459

RESUMO

Like pathogens, beneficial endophytic fungi secrete effector proteins to promote plant colonization, for example, through perturbation of host immunity. The genome of the root endophyte Serendipita indica encodes a novel family of highly similar, small alanine- and histidine-rich proteins, whose functions remain unknown. Members of this protein family carry an N-terminal signal peptide and a conserved C-terminal DELD motif. Here we report on the functional characterization of the plant-responsive DELD family protein Dld1 using a combination of structural, biochemical, biophysical and cytological analyses. The crystal structure of Dld1 shows an unusual, monomeric histidine zipper consisting of two antiparallel coiled-coil helices. Similar to other histidine-rich proteins, Dld1 displays varying affinity to different transition metal ions and undergoes metal ion- and pH-dependent unfolding. Transient expression of mCherry-tagged Dld1 in barley leaf and root tissue suggests that Dld1 localizes to the plant cell wall and accumulates at cell wall appositions during fungal penetration. Moreover, recombinant Dld1 enhances barley root colonization by S. indica, and inhibits H2 O2 -mediated radical polymerization of 3,3'-diaminobenzidine. Our data suggest that Dld1 has the potential to enhance micronutrient accessibility for the fungus and to interfere with oxidative stress and reactive oxygen species homeostasis to facilitate host colonization.


Assuntos
Histidina , Hordeum , Alanina , Basidiomycota , Fungos , Homeostase , Hordeum/genética , Estresse Oxidativo , Doenças das Plantas , Raízes de Plantas
15.
Plant J ; 102(6): 1142-1156, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31925978

RESUMO

Plants survey their environment for the presence of potentially harmful or beneficial microbes. During colonization, cell surface receptors perceive microbe-derived or modified-self ligands and initiate appropriate responses. The recognition of fungal chitin oligomers and the subsequent activation of plant immunity are well described. In contrast, the mechanisms underlying ß-glucan recognition and signaling activation remain largely unexplored. Here, we systematically tested immune responses towards different ß-glucan structures and show that responses vary between plant species. While leaves of the monocots Hordeum vulgare and Brachypodium distachyon can recognize longer (laminarin) and shorter (laminarihexaose) ß-1,3-glucans with responses of varying intensity, duration and timing, leaves of the dicot Nicotiana benthamiana activate immunity in response to long ß-1,3-glucans, whereas Arabidopsis thaliana and Capsella rubella perceive short ß-1,3-glucans. Hydrolysis of the ß-1,6 side-branches of laminarin demonstrated that not the glycosidic decoration but rather the degree of polymerization plays a pivotal role in the recognition of long-chain ß-glucans. Moreover, in contrast to the recognition of short ß-1,3-glucans in A. thaliana, perception of long ß-1,3-glucans in N. benthamiana and rice is independent of CERK1, indicating that ß-glucan recognition may be mediated by multiple ß-glucan receptor systems.


Assuntos
Imunidade Vegetal , beta-Glucanas/metabolismo , Arabidopsis/imunologia , Arabidopsis/metabolismo , Brachypodium/imunologia , Brachypodium/metabolismo , Capsella/imunologia , Capsella/metabolismo , Glucanos/metabolismo , Hordeum/imunologia , Hordeum/metabolismo , Oligossacarídeos/metabolismo , Folhas de Planta/imunologia , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Receptores Imunológicos/metabolismo , Especificidade da Espécie , Nicotiana/imunologia , Nicotiana/metabolismo
16.
EMBO J ; 39(2): e104144, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31886558

RESUMO

Recent discoveries show that plant recruitment of fungi and bacteria in a non-mycorrhizal host follows different strategies dependent on phosphate availability. A new study by Morcillo et al (2019) demonstrates that volatile compounds synthesized by rhizobacteria contribute to phosphate starvation response-dependent regulation of bacterial colonization and immune system activation in Arabidopsis thaliana plants.


Assuntos
Diacetil , Fosfatos , Bactérias , Fungos , Imunidade Vegetal
17.
Proc Natl Acad Sci U S A ; 116(31): 15735-15744, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31311863

RESUMO

Plants in their natural ecosystems interact with numerous microorganisms, but how they influence their microbiota is still elusive. We observed that sulfatase activity in soil, which can be used as a measure of rhizosphere microbial activity, is differently affected by Arabidopsis accessions. Following a genome-wide association analysis of the variation in sulfatase activity we identified a candidate gene encoding an uncharacterized cytochrome P450, CYP71A27 Loss of this gene resulted in 2 different and independent microbiota-specific phenotypes: A lower sulfatase activity in the rhizosphere and a loss of plant growth-promoting effect by Pseudomonas sp. CH267. On the other hand, tolerance to leaf pathogens was not affected, which agreed with prevalent expression of CYP71A27 in the root vasculature. The phenotypes of cyp71A27 mutant were similar to those of cyp71A12 and cyp71A13, known mutants in synthesis of camalexin, a sulfur-containing indolic defense compound. Indeed, the cyp71A27 mutant accumulated less camalexin in the roots upon elicitation with silver nitrate or flagellin. Importantly, addition of camalexin complemented both the sulfatase activity and the loss of plant growth promotion by Pseudomonas sp. CH267. Two alleles of CYP71A27 were identified among Arabidopsis accessions, differing by a substitution of Glu373 by Gln, which correlated with the ability to induce camalexin synthesis and to gain fresh weight in response to Pseudomonas sp. CH267. Thus, CYP71A27 is an additional component in the camalexin synthesis pathway, contributing specifically to the control of plant microbe interactions in the root.


Assuntos
Arabidopsis , Sistema Enzimático do Citocromo P-450 , Indóis/metabolismo , Raízes de Plantas , Pseudomonas/metabolismo , Tiazóis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Mutação , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia
18.
New Phytol ; 224(2): 886-901, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31074884

RESUMO

In nature, beneficial and pathogenic fungi often simultaneously colonise plants. Despite substantial efforts to understand the composition of natural plant-microbe communities, the mechanisms driving such multipartite interactions remain largely unknown. Here we address how the interaction between the beneficial root endophyte Serendipita vermifera and the pathogen Bipolaris sorokiniana affects fungal behaviour and determines barley host responses using a gnotobiotic soil-based split-root system. Fungal confrontation in soil resulted in induction of B. sorokiniana genes involved in secondary metabolism and a significant repression of genes encoding putative effectors. In S. vermifera, genes encoding hydrolytic enzymes were strongly induced. This antagonistic response was not activated during the tripartite interaction in barley roots. Instead, we observed a specific induction of S. vermifera genes involved in detoxification and redox homeostasis. Pathogen infection but not endophyte colonisation resulted in substantial host transcriptional reprogramming and activation of defence. In the presence of S. vermifera, pathogen infection and disease symptoms were significantly reduced despite no marked alterations of the plant transcriptional response. The activation of stress response genes and concomitant repression of putative effector gene expression in B. sorokiniana during confrontation with the endophyte suggest a reduction of the pathogen's virulence potential before host plant infection.


Assuntos
Ascomicetos/fisiologia , Basidiomycota/fisiologia , Hordeum/microbiologia , Raízes de Plantas/microbiologia , Antibiose , Regulação Fúngica da Expressão Gênica/fisiologia , Regulação da Expressão Gênica de Plantas/imunologia , Doenças das Plantas/microbiologia , Microbiologia do Solo
19.
EMBO Rep ; 20(2)2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30642845

RESUMO

Extracellular adenosine 5'-triphosphate (eATP) is an essential signaling molecule that mediates different cellular processes through its interaction with membrane-associated receptor proteins in animals and plants. eATP regulates plant growth, development, and responses to biotic and abiotic stresses. Its accumulation in the apoplast induces ROS production and cytoplasmic calcium increase mediating a defense response to invading microbes. We show here that perception of extracellular nucleotides, such as eATP, is important in plant-fungus interactions and that during colonization by the beneficial root endophyte Serendipita indica eATP accumulates in the apoplast at early symbiotic stages. Using liquid chromatography-tandem mass spectrometry, and cytological and functional analysis, we show that S. indica secrets SiE5'NT, an enzymatically active ecto-5'-nucleotidase capable of hydrolyzing nucleotides in the apoplast. Arabidopsis thaliana lines producing extracellular SiE5'NT are significantly better colonized, have reduced eATP levels, and altered responses to biotic stresses, indicating that SiE5'NT functions as a compatibility factor. Our data suggest that extracellular bioactive nucleotides and their perception play an important role in fungus-root interactions and that fungal-derived enzymes can modify apoplastic metabolites to promote fungal accommodation.


Assuntos
Trifosfato de Adenosina/metabolismo , Basidiomycota/fisiologia , Nucleotídeos/metabolismo , Plantas/microbiologia , Difosfato de Adenosina , Monofosfato de Adenosina , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Espaço Extracelular/metabolismo , Hordeum , Interações Hospedeiro-Patógeno , Hidrólise , Modelos Moleculares , Proteínas de Plantas/química , Raízes de Plantas/microbiologia , Conformação Proteica , Estresse Fisiológico
20.
New Phytol ; 222(3): 1493-1506, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30688363

RESUMO

In the root endophyte Serendipita indica, several lectin-like members of the expanded multigene family of WSC proteins are transcriptionally induced in planta and are potentially involved in ß-glucan remodeling at the fungal cell wall. Using biochemical and cytological approaches we show that one of these lectins, SiWSC3 with three WSC domains, is an integral fungal cell wall component that binds to long-chain ß1-3-glucan but has no affinity for shorter ß1-3- or ß1-6-linked glucose oligomers. Comparative analysis with the previously identified ß-glucan-binding lectin SiFGB1 demonstrated that whereas SiWSC3 does not require ß1-6-linked glucose for efficient binding to branched ß1-3-glucan, SiFGB1 does. In contrast to SiFGB1, the multivalent SiWSC3 lectin can efficiently agglutinate fungal cells and is additionally induced during fungus-fungus confrontation, suggesting different functions for these two ß-glucan-binding lectins. Our results highlight the importance of the ß-glucan cell wall component in plant-fungus interactions and the potential of ß-glucan-binding lectins as specific detection tools for fungi in vivo.


Assuntos
Basidiomycota/metabolismo , Proteínas Fúngicas/metabolismo , Lectinas/metabolismo , beta-Glucanas/metabolismo , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Basidiomycota/genética , Basidiomycota/ultraestrutura , Agregação Celular , Parede Celular/metabolismo , Parede Celular/ultraestrutura , Proteínas Fúngicas/química , Regulação Fúngica da Expressão Gênica , Domínios Proteicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...