Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 33(6): 108373, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33176136

RESUMO

Genome-wide profiling of nascent RNA has become a fundamental tool to study transcription regulation. Unlike steady-state RNA-sequencing (RNA-seq), nascent RNA profiling mirrors real-time activity of RNA polymerases and provides an accurate readout of transcriptome-wide variations. Some species of nuclear RNAs (i.e., large intergenic noncoding RNAs [lincRNAs] and eRNAs) have a short half-life and can only be accurately gauged by nascent RNA techniques. Furthermore, nascent RNA-seq detects post-cleavage RNA at termination sites and promoter-associated antisense RNAs, providing insights into RNA polymerase II (RNAPII) dynamics and processivity. Here, we present a run-on assay with 4-thio ribonucleotide (4-S-UTP) labeling, followed by reversible biotinylation and affinity purification via streptavidin. Our protocol allows streamlined sample preparation within less than 3 days. We named the technique fastGRO (fast Global Run-On). We show that fastGRO is highly reproducible and yields a more complete and extensive coverage of nascent RNA than comparable techniques can. Importantly, we demonstrate that fastGRO is scalable and can be performed with as few as 0.5 × 106 cells.


Assuntos
Perfilação da Expressão Gênica/métodos , Análise de Sequência de RNA/métodos , Transcrição Gênica/genética , Humanos
2.
Mol Cell Neurosci ; 92: 149-163, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30144504

RESUMO

Tuberous Sclerosis Complex (TSC) is a disease caused by autosomal dominant mutations in the TSC1 or TSC2 genes, and is characterized by tumor susceptibility, brain lesions, seizures and behavioral impairments. The TSC1 and TSC2 genes encode proteins forming a complex (TSC), which is a major regulator and suppressor of mammalian target of rapamycin complex 1 (mTORC1), a signaling complex that promotes cell growth and proliferation. TSC1/2 loss of heterozygosity (LOH) and the subsequent complete loss of TSC regulatory activity in null cells causes mTORC1 dysregulation and TSC-associated brain lesions or other tissue tumors. However, it is not clear whether TSC1/2 heterozygous brain cells are abnormal and contribute to TSC neuropathology. To investigate this issue, we generated induced pluripotent stem cells (iPSCs) from TSC patients and unaffected controls, and utilized these to obtain neural progenitor cells (NPCs) and differentiated neurons in vitro. These patient-derived TSC2 heterozygous NPCs were delayed in their ability to differentiate into neurons. Patient-derived progenitor cells also exhibited a modest activation of mTORC1 signaling downstream of TSC, and a marked attenuation of upstream PI3K/AKT signaling. We further show that pharmacologic PI3K or AKT inhibition, but not mTORC1 inhibition, causes a neuronal differentiation delay, mimicking the patient phenotype. Together these data suggest that heterozygous TSC2 mutations disrupt neuronal development, potentially contributing to the disease neuropathology, and that this defect may result from dysregulated PI3K/AKT signaling in neural progenitor cells.


Assuntos
Células-Tronco Neurais/metabolismo , Neurogênese , Transdução de Sinais , Esclerose Tuberosa/metabolismo , Adolescente , Adulto , Linhagem Celular , Células Cultivadas , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Masculino , Células-Tronco Neurais/citologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Esclerose Tuberosa/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...