Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 289
Filtrar
1.
Nat Med ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773341

RESUMO

An important challenge in the real-world management of patients with advanced clear-cell renal cell carcinoma (aRCC) is determining who might benefit from immune checkpoint blockade (ICB). Here we performed a comprehensive multiomics mapping of aRCC in the context of ICB treatment, involving discovery analyses in a real-world data cohort followed by validation in independent cohorts. We cross-connected bulk-tumor transcriptomes across >1,000 patients with validations at single-cell and spatial resolutions, revealing a patient-specific crosstalk between proinflammatory tumor-associated macrophages and (pre-)exhausted CD8+ T cells that was distinguished by a human leukocyte antigen repertoire with higher preference for tumoral neoantigens. A cross-omics machine learning pipeline helped derive a new tumor transcriptomic footprint of neoantigen-favoring human leukocyte antigen alleles. This machine learning signature correlated with positive outcome following ICB treatment in both real-world data and independent clinical cohorts. In experiments using the RENCA-tumor mouse model, CD40 agonism combined with PD1 blockade potentiated both proinflammatory tumor-associated macrophages and CD8+ T cells, thereby achieving maximal antitumor efficacy relative to other tested regimens. Thus, we present a new multiomics and spatial map of the immune-community architecture that drives ICB response in patients with aRCC.

2.
Nat Commun ; 15(1): 3031, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589411

RESUMO

Hepatoblastomas (HB) display heterogeneous cellular phenotypes that influence the clinical outcome, but the underlying mechanisms are poorly understood. Here, we use a single-cell multiomic strategy to unravel the molecular determinants of this plasticity. We identify a continuum of HB cell states between hepatocytic (scH), liver progenitor (scLP) and mesenchymal (scM) differentiation poles, with an intermediate scH/LP population bordering scLP and scH areas in spatial transcriptomics. Chromatin accessibility landscapes reveal the gene regulatory networks of each differentiation pole, and the sequence of transcription factor activations underlying cell state transitions. Single-cell mapping of somatic alterations reveals the clonal architecture of each tumor, showing that each genetic subclone displays its own range of cellular plasticity across differentiation states. The most scLP subclones, overexpressing stem cell and DNA repair genes, proliferate faster after neo-adjuvant chemotherapy. These results highlight how the interplay of clonal evolution and epigenetic plasticity shapes the potential of HB subclones to respond to chemotherapy.


Assuntos
Hepatoblastoma , Neoplasias Hepáticas , Humanos , Hepatoblastoma/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Plasticidade Celular/genética , Multiômica , Evolução Clonal/genética
4.
Eur J Cancer ; 200: 113583, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38330765

RESUMO

BACKGROUND: Hepatoblastoma is the most frequent pediatric liver cancer. The current treatments lead to 80% of survival rate at 5 years. In this study, we evaluated the clinical relevance of molecular features to identify patients at risk of chemoresistance, relapse and death of disease. METHODS: All the clinical data of 86 children with hepatoblastoma were retrospectively collected. Pathological slides were reviewed, tumor DNA sequencing (by whole exome, whole genome or target) and transcriptomic profiling with RNAseq or 300-genes panel were performed. Associations between the clinical, pathological, mutational and transcriptomic data were investigated. RESULTS: High-risk patients represented 44% of our series and the median age at diagnosis was 21.9 months (range: 0-208). Alterations of the WNT/ß-catenin pathway and of the 11p15.5 imprinted locus were identified in 98% and 74% of the tumors, respectively. Other cancer driver genes mutations were only found in less than 11% of tumors. After neoadjuvant chemotherapy, disease-specific survival and poor response to neoadjuvant chemotherapy were associated with 'Liver Progenitor' (p = 0.00049, p < 0.0001) and 'Immune Cold' (p = 0.0011, p < 0.0001) transcriptomic tumor subtypes, SBS35 cisplatin mutational signature (p = 0.018, p = 0.001), mutations in rare cancer driver genes (p = 0.0039, p = 0.0017) and embryonal predominant histological type (p = 0.0013, p = 0.0077), respectively. Integration of the clinical and molecular features revealed a cluster of molecular markers associated with resistance to chemotherapy and survival, enlightening transcriptomic 'Immune Cold' and Liver Progenitor' as a predictor of survival independent of the clinical features. CONCLUSIONS: Response to neoadjuvant chemotherapy and survival in children treated for hepatoblastoma are associated with genomic and pathological features independently of the clinical features.


Assuntos
Hepatoblastoma , Neoplasias Hepáticas , Criança , Humanos , Hepatoblastoma/genética , Hepatoblastoma/patologia , Estudos Retrospectivos , Recidiva Local de Neoplasia , Neoplasias Hepáticas/patologia , Mutação , Perfilação da Expressão Gênica
5.
Mol Ther ; 32(4): 1125-1143, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38311851

RESUMO

The CTNNB1 gene, encoding ß-catenin, is frequently mutated in hepatocellular carcinoma (HCC, ∼30%) and in hepatoblastoma (HB, >80%), in which DLK1/DIO3 locus induction is correlated with CTNNB1 mutations. Here, we aim to decipher how sustained ß-catenin activation regulates DLK1/DIO3 locus expression and the role this locus plays in HB and HCC development in mouse models deleted for Apc (ApcΔhep) or Ctnnb1-exon 3 (ß-cateninΔExon3) and in human CTNNB1-mutated hepatic cancer cells. We identified an enhancer site bound by TCF-4/ß-catenin complexes in an open conformation upon sustained ß-catenin activation (DLK1-Wnt responsive element [WRE]) and increasing DLK1/DIO3 locus transcription in ß-catenin-mutated human HB and mouse models. DLK1-WRE editing by CRISPR-Cas9 approach impaired DLK1/DIO3 locus expression and slowed tumor growth in subcutaneous CTNNB1-mutated tumor cell grafts, ApcΔhep HB and ß-cateninΔExon3 HCC. Tumor growth inhibition resulted either from increased FADD expression and subsequent caspase-3 cleavage in the first case or from decreased expression of cell cycle actors regulated by FoxM1 in the others. Therefore, the DLK1/DIO3 locus is an essential determinant of FoxM1-dependent cell proliferation during ß-catenin-driven liver tumorigenesis. Targeting the DLK1-WRE enhancer to silence the DLK1/DIO3 locus might thus represent an interesting therapeutic strategy to restrict tumor growth in primary liver cancers with CTNNB1 mutations.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Humanos , Camundongos , beta Catenina/genética , beta Catenina/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Carcinogênese/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Cateninas/genética , Cateninas/metabolismo , Proliferação de Células/genética , Neoplasias Hepáticas/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Regulação para Cima
6.
Nat Commun ; 14(1): 7122, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932266

RESUMO

Pediatric liver tumors are very rare tumors with the most common diagnosis being hepatoblastoma. While hepatoblastomas are predominantly sporadic, around 15% of cases develop as part of predisposition syndromes such as Beckwith-Wiedemann (11p15.5 locus altered). Here, we identify mosaic genetic alterations of 11p15.5 locus in the liver of hepatoblastoma patients without a clinical diagnosis of Beckwith-Wiedemann syndrome. We do not retrieve these alterations in children with other types of pediatric liver tumors. We show that mosaic 11p15.5 alterations in liver FFPE sections of hepatoblastoma patients display IGF2 overexpression and H19 downregulation together with an alteration of the liver zonation. Moreover, mosaic livers' microenvironment is enriched in extracellular matrix and angiogenesis. Spatial transcriptomics and single-nucleus RNAseq analyses identify a 60-gene signature in 11p15.5 altered hepatocytes. These data provide insights for 11p15.5 mosaicism detection and its functional consequences during the early steps of carcinogenesis.


Assuntos
Síndrome de Beckwith-Wiedemann , Hepatoblastoma , Neoplasias Hepáticas , Humanos , Criança , Pré-Escolar , Hepatoblastoma/genética , Síndrome de Beckwith-Wiedemann/diagnóstico , Síndrome de Beckwith-Wiedemann/genética , Síndrome de Beckwith-Wiedemann/patologia , Neoplasias Hepáticas/genética , Mosaicismo , Metilação de DNA , Impressão Genômica , Microambiente Tumoral
7.
Hepatology ; 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37870291

RESUMO

BACKGROUND AND AIMS: NAFLD is the most common form of liver disease worldwide, but only a subset of individuals with NAFLD may progress to NASH. While NASH is an important etiology of HCC, the underlying mechanisms responsible for the conversion of NAFLD to NASH and then to HCC are poorly understood. We aimed to identify genetic risk genes that drive NASH and NASH-related HCC. APPROACH AND RESULTS: We searched genetic alleles among the 24 most significant alleles associated with body fat distribution from a genome-wide association study of 344,369 individuals and validated the top allele in 3 independent cohorts of American and European patients (N=1380) with NAFLD/NASH/HCC. We identified an rs3747579-TT variant significantly associated with NASH-related HCC and demonstrated that rs3747579 is expression quantitative trait loci of a mitochondrial DnaJ Heat Shock Protein Family (Hsp40) Member A3 ( DNAJA3 ). We also found that rs3747579-TT and a previously identified PNPLA3 as a functional variant of NAFLD to have significant additional interactions with NASH/HCC risk. Patients with HCC with rs3747579-TT had a reduced expression of DNAJA3 and had an unfavorable prognosis. Furthermore, mice with hepatocyte-specific Dnaja3 depletion developed NASH-dependent HCC either spontaneously under a normal diet or enhanced by diethylnitrosamine. Dnaja3 -deficient mice developed NASH/HCC characterized by significant mitochondrial dysfunction, which was accompanied by excessive lipid accumulation and inflammatory responses. The molecular features of NASH/HCC in the Dnaja3 -deficient mice were closely associated with human NASH/HCC. CONCLUSIONS: We uncovered a genetic basis of DNAJA3 as a key player of NASH-related HCC.

8.
J Hepatol ; 79(6): 1450-1458, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37647991

RESUMO

BACKGROUND & AIMS: The "French Medicine Genomic program 2025" has been designed to give patients with cancers that are refractory to systemic treatments access to off-label therapies adapted to their specific genomic profile. Herein, we reported the results of this program in patients with advanced hepatocellular carcinoma (HCC) and hepato-cholangiocarcinoma (H-CCK). METHODS: In one center, all patients with HCC or H-CCK who progressed under atezolizumab/bevacizumab with available tumor frozen samples benefited from whole-genome/-exome and RNA sequencing. Targeted therapies were matched to genomic alterations following the recommendations of a molecular tumor board and radiological response and overall survival were assessed. RESULTS: Among 135 patients with HCC and H-CCK treated by atezolizumab/bevacizumab, 20 patients benefited from genomic analysis after progression (16 HCC; 4 H-CCK). Nineteen patients had analyzable data, 70% were male, median age was 57 years, 65% had metastatic disease and 45% had vascular invasion. Among these 19 patients, 14 patients (76%) harbored at least one actionable genomic alteration and 9/14 received an adapted targeted therapy (45%). One patient with H-CCK showing CDK4 amplification was treated with palbociclib and achieved a partial radiological response for 16 months. Another patient with H-CCK, high HER2 overexpression and a high homologous recombination score was treated with trastuzumab/olaparib and had stable disease. One patient with an HCC and bi-allelic inactivation of TSC2 achieved a complete radiological response under everolimus. The remaining six treated patients (all HCC) had progressive disease, including three patients treated with trametinib, two with everolimus and one with olaparib. CONCLUSION: Molecular-based guided therapy is feasible in patients with HCC/H-CCK progressing under atezolizumab/bevacizumab and may be useful in a small subset of patients. IMPACT AND IMPLICATIONS: The use of whole-genome/-exome and RNA sequencing in clinical practice has not been reported in patients with hepatocellular carcinoma and hepato-cholangiocarcinoma. Herein, we performed a pilot study which suggested that whole-genome/-exome and RNA sequencing is feasible on tumor biopsies from patients refractory to atezolizumab/bevacizumab, with a small subset of patients exhibiting at least one actionable genomic alteration and receiving an adapted targeted therapy. This proof-of-concept study suggests that this clinical strategy could benefit a small subset of patients. Finally, validation of this approach will be required in a larger cohort of patients.


Assuntos
Neoplasias dos Ductos Biliares , Carcinoma Hepatocelular , Colangiocarcinoma , Neoplasias Hepáticas , Terapia de Alvo Molecular , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Bevacizumab/uso terapêutico , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/genética , Ductos Biliares Intra-Hepáticos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/genética , Everolimo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Projetos Piloto , Medicina de Precisão , Antineoplásicos/uso terapêutico
9.
Am J Cancer Res ; 13(5): 2116-2125, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37293154

RESUMO

Vascular endothelial growth factor receptor tyrosine kinase inhibitors (VEGFR-TKIs) are key antiangiogenic drugs for renal cancer treatment. While Von Hippel-Lindau dysfunction constitutes the base for VEGFR-TKIs sensitivity, the role for individual and concurrent mutations in the genes encoding for the chromatin remodelers Polybromo-1 (PBRM1) and Lysine Demethylase 5C (KDM5C) is poorly understood. Here, we analyzed the tumor mutational and expression profiles of 155 unselected clear cell RCC (ccRCC) cases treated with first-line VEGFR-TKIs and the ccRCC cases of IMmotion151 trial were used for validation. We found that concurrent PBRM1 and KDM5C (PBRM1&KDM5C) mutations occurred in 4-9% of cases and were enriched in Memorial Sloan Kettering Cancer Center favorable-risk patients. In our cohort, tumors only mutated in PBRM1 or concurrently mutated in PBRM1 and KDM5C had increased angiogenesis (P=0.0068 and 0.039; respectively), and tumors only mutated in KDM5C showed a similar trend. Best response to VEGFR-TKIs corresponded to PBRM1&KDM5C mutated cases, followed by those mutated only in KDM5C or only in PBRM1 (P=0.050, 0.040 and 0.027 versus non-mutated cases, respectively), with a trend for longer progression free survival (PFS) in the group with only PBRM1 mutated (HR=0.64; P=0.059). Validation in the IMmotion151 trial revealed a similar correlation with increased angiogenesis and the PFS of patients in the VEGFR-TKI-arm was the longest in PBRM1&KDM5C mutated cases, intermediate for only PBRM1 or only KDM5C mutated patients and the shortest in non-mutated cases (P=0.009 and 0.025, for PBRM1&KDM5C and PBRM1 versus non-mutated cases). In conclusion, somatic PBRM1 and KDM5C mutations are common in patients with metastatic ccRCC and likely cooperate increasing tumor angiogenesis and VEGFR-TKI-based antiangiogenic therapy benefit.

10.
J Hepatol ; 79(4): 989-1005, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37302584

RESUMO

BACKGROUND & AIMS: Hepatoblastoma (HB) is the most frequent childhood liver cancer. Patients with aggressive tumors have limited therapeutic options; therefore, a better understanding of HB pathogenesis is needed to improve treatment. HBs have a very low mutational burden; however, epigenetic alterations are increasingly recognized. We aimed to identify epigenetic regulators consistently dysregulated in HB and to evaluate the therapeutic efficacy of their targeting in clinically relevant models. METHODS: We performed a comprehensive transcriptomic analysis of 180 epigenetic genes. Data from fetal, pediatric, adult, peritumoral (n = 72) and tumoral (n = 91) tissues were integrated. Selected epigenetic drugs were tested in HB cells. The most relevant epigenetic target identified was validated in primary HB cells, HB organoids, a patient-derived xenograft model, and a genetic mouse model. Transcriptomic, proteomic and metabolomic mechanistic analyses were performed. RESULTS: Altered expression of genes regulating DNA methylation and histone modifications was consistently observed in association with molecular and clinical features of poor prognosis. The histone methyltransferase G9a was markedly upregulated in tumors with epigenetic and transcriptomic traits of increased malignancy. Pharmacological targeting of G9a significantly inhibited growth of HB cells, organoids and patient-derived xenografts. Development of HB induced by oncogenic forms of ß-catenin and YAP1 was ablated in mice with hepatocyte-specific deletion of G9a. We observed that HBs undergo significant transcriptional rewiring in genes involved in amino acid metabolism and ribosomal biogenesis. G9a inhibition counteracted these pro-tumorigenic adaptations. Mechanistically, G9a targeting potently repressed the expression of c-MYC and ATF4, master regulators of HB metabolic reprogramming. CONCLUSIONS: HBs display a profound dysregulation of the epigenetic machinery. Pharmacological targeting of key epigenetic effectors exposes metabolic vulnerabilities that can be leveraged to improve the treatment of these patients. IMPACT AND IMPLICATIONS: In spite of recent advances in the management of hepatoblastoma (HB), treatment resistance and drug toxicity are still major concerns. This systematic study reveals the remarkable dysregulation in the expression of epigenetic genes in HB tissues. Through pharmacological and genetic experimental approaches, we demonstrate that the histone-lysine-methyltransferase G9a is an excellent drug target in HB, which can also be harnessed to enhance the efficacy of chemotherapy. Furthermore, our study highlights the profound pro-tumorigenic metabolic rewiring of HB cells orchestrated by G9a in coordination with the c-MYC oncogene. From a broader perspective, our findings suggest that anti-G9a therapies may also be effective in other c-MYC-dependent tumors.


Assuntos
Hepatoblastoma , Neoplasias Hepáticas , Humanos , Animais , Camundongos , Hepatoblastoma/tratamento farmacológico , Hepatoblastoma/genética , Hepatoblastoma/metabolismo , Proteômica , Epigênese Genética , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Metilação de DNA , Carcinogênese/genética
11.
Mod Pathol ; 36(9): 100211, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37169258

RESUMO

Borderline hepatocellular adenomas (BL-HCA) are characterized by focal architectural/cytologic atypia and reticulin loss, features that are insufficient for a definitive diagnosis of hepatocellular carcinoma (HCC). The diagnosis and management of BL-HCA are challenging as their biological behavior, especially in terms of malignant potential, is still debated. We aimed to compare the clinicopathologic and molecular features of BL-HCA with those of typical HCA (T-HCA), HCA with malignant transformation (HCC on HCA), and HCC to assess the risk of malignancy. One hundred six liver resection specimens were retrospectively selected from 2 reference centers, including 39 BL-HCA, 42 T-HCA, 12 HCC on HCA, and 13 HCC specimens. Somatic mutations, including TERT promoter mutations associated with HCA malignant transformation and the gene expression levels of 96 genes, were investigated in 93 frozen samples. Additionally, TERT promoter mutations were investigated in 44 formalin-fixed, paraffin-embedded samples. The clinical features of patients with BL-HCA were similar to those of patients with T-HCA, patients being mainly women (69%) with a median age of 37 years. The median tumor size was 7.5 cm, 64% of patients had a single nodule, and no recurrence was observed. Compared with T-HCA, BL-HCA was significantly enriched in ß-catenin-mutated HCA in exon 3 (41% vs 6%; P < .001). Unsupervised statistical analysis based on gene expression showed that BL-HCA overlapped with T-HCA and HCC on HCA, favoring a molecular continuum of the tumors. TERT promoter mutations were observed only in HCC on HCA (42%) and in HCC (38%). In conclusion, these results suggest that despite their worrisome morphologic features, the clinicopathologic and molecular features of BL-HCA are much closer to those of T-HCA than those of HCC on HCA or HCC. This strongly supports the usefulness of combining morphologic and molecular analyses in a practical diagnostic approach for guiding the management of BL-HCA.


Assuntos
Adenoma de Células Hepáticas , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Feminino , Adulto , Masculino , Adenoma de Células Hepáticas/diagnóstico , Adenoma de Células Hepáticas/genética , Adenoma de Células Hepáticas/patologia , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Estudos Retrospectivos , Hepatectomia , Transformação Celular Neoplásica
12.
J Hepatol ; 79(3): 704-716, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37201672

RESUMO

BACKGROUND & AIMS: Recurrent somatic mutations of the RPS6KA3 gene encoding for the serine/threonine kinase RSK2 were identified in hepatocellular carcinomas (HCCs), suggesting its tumour-suppressive function. Our goal was to demonstrate the tumour suppressor role of RSK2 in the liver and investigate the functional consequences of its inactivation. METHODS: We analysed a series of 1,151 human HCCs for RSK2 mutations and 20 other driver genetic alterations. We then modelled RSK2 inactivation in mice in various mutational contexts recapitulating or not those naturally found in human HCC, using transgenic mice and liver-specific carcinogens. These models were monitored for liver tumour appearance and subjected to phenotypic and transcriptomic analyses. Functional consequences of RSK2 rescue were also investigated in a human RSK2-deficient HCC cell line. RESULTS: RSK2-inactivating mutations are specific to human HCC and frequently co-occur with AXIN1-inactivating or ß-catenin-activating mutations. Modelling of these co-occurrences in mice showed a cooperative effect in promoting liver tumours with transcriptomic profiles recapitulating those of human HCCs. By contrast, there was no cooperation in liver tumour induction between RSK2 loss and BRAF-activating mutations chemically induced by diethylnitrosamine. In human liver cancer cells, we also showed that RSK2 inactivation confers some dependency to the activation of RAS/MAPK signalling that can be targeted by MEK inhibitors. CONCLUSIONS: Our study demonstrates the tumour suppressor role of RSK2 and its specific synergistic effect in hepatocarcinogenesis when its loss of function is specifically combined with AXIN1 inactivation or ß-catenin activation. Furthermore, we identified the RAS/MAPK pathway as a potential therapeutic target for RSK2-inactivated liver tumours. IMPACT AND IMPLICATIONS: This study demonstrated the tumour suppressor role of RSK2 in the liver and showed that its inactivation specifically synergises with AXIN1 inactivation or ß-catenin activation to promote the development of HCC with similar transcriptomic profiles as found in humans. Furthermore, this study highlights that activation of the RAS/MAPK pathway is one of the key signalling pathways mediating the oncogenic effect of RSK2 inactivation that can be targeted with already available anti-MEK therapies.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Humanos , Camundongos , Proteína Axina/genética , beta Catenina/metabolismo , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Mutação , Transdução de Sinais
13.
J Hepatol ; 79(2): 492-505, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36889360

RESUMO

Since the initial development of the exposome concept, much effort has been devoted to the characterisation of the exposome through analytical, epidemiological, and toxicological/mechanistic studies. There is now an urgent need to link the exposome to human diseases and to include exposomics in the characterisation of environment-linked pathologies together with genomics and other omics. Liver diseases are particularly well suited for such studies since major functions of the liver include the detection, detoxification, and elimination of xenobiotics, as well as inflammatory responses. It is well known that several liver diseases are associated with i) addictive behaviours such as alcohol consumption, smoking, and to a certain extent dietary imbalance and obesity, ii) viral and parasitic infections, and iii) exposure to toxins and occupational chemicals. Recent studies indicate that environmental exposures are also significantly associated with liver diseases, and these include air pollution (particulate matter and volatile chemicals), contaminants such as polyaromatic hydrocarbons, bisphenol A and per-and poly-fluorinated substances, and physical stressors such as radiation. Furthermore, microbial metabolites and the "gut-liver" axis play a major role in liver diseases. Exposomics is poised to play a major role in the field of liver pathology. Methodological advances such as the exposomics-metabolomics framework, the determination of risk factors' genomic and epigenomic signatures, and cross-species biological pathway analysis should further delineate the impact of the exposome on the liver, opening the way for improved prevention, as well as the identification of new biomarkers of exposure and effects, and additional therapeutic targets.


Assuntos
Poluição do Ar , Expossoma , Hepatopatias , Humanos , Exposição Ambiental/efeitos adversos , Hepatopatias/etiologia
14.
NAR Cancer ; 5(2): zcad014, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36937541

RESUMO

Somatic mutations can disrupt splicing regulatory elements and have dramatic effects on cancer genes, yet the functional consequences of mutations located in extended splice regions is difficult to predict. Here, we use a deep neural network (SpliceAI) to characterize the landscape of splice-altering mutations in cancer. In our in-house series of 401 liver cancers, SpliceAI uncovers 1244 cryptic splice mutations, located outside essential splice sites, that validate at a high rate (66%) in matched RNA-seq data. We then extend the analysis to a large pan-cancer cohort of 17 714 tumors, revealing >100 000 cryptic splice mutations. Taking into account these mutations increases the power of driver gene discovery, revealing 126 new candidate driver genes. It also reveals new driver mutations in known cancer genes, doubling the frequency of splice alterations in tumor suppressor genes. Mutational signature analysis suggests mutational processes that could give rise preferentially to splice mutations in each cancer type, with an enrichment of signatures related to clock-like processes and DNA repair deficiency. Altogether, this work sheds light on the causes and impact of cryptic splice mutations in cancer, and highlights the power of deep learning approaches to better annotate the functional consequences of mutations in oncology.

15.
Cancers (Basel) ; 15(3)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36765775

RESUMO

Hepatocellular carcinoma (HCC) accounts for 90% of primary hepatic malignancies and is one of the major causes of cancer-related death. Over the last 15 years, the molecular landscape of HCC has been deciphered, with the identification of the main driver genes of liver carcinogenesis that belong to six major biological pathways, such as telomere maintenance, Wnt/b-catenin, P53/cell cycle regulation, oxidative stress, epigenetic modifiers, AKT/mTOR and MAP kinase. The combination of genetic and transcriptomic data composed various HCC subclasses strongly related to risk factors, pathological features and prognosis. However, translation into clinical practice is not achieved, mainly because the most frequently mutated genes are undruggable. Moreover, the results derived from the analysis of a single tissue sample may not adequately catch the intra- and intertumor heterogeneity. The analysis of circulating tumor DNA (ctDNA) is broadly developed in other types of cancer for early diagnosis, prognosis and monitoring under systemic treatment in order to identify primary and secondary mechanisms of resistance. The aim of this review is to describe recent data about the HCC molecular landscape and to discuss how ctDNA could be used in the future for HCC detection and management.

16.
J Hepatol ; 78(3): 584-595, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36427656

RESUMO

BACKGROUND & AIMS: Identifying individuals at higher risk of developing hepatocellular carcinoma (HCC) is pivotal to improve the performance of surveillance strategies. Herein, we aimed to evaluate the ability of single nucleotide polymorphisms (SNPs) to refine HCC risk stratification. METHODS: Six SNPs in PNPLA3, TM6SF2, HSD17B13, APOE, and MBOAT7 affecting lipid turnover and one variant involved in the Wnt-ß-catenin pathway (WNT3A-WNT9A rs708113) were assessed in patients with alcohol-related and/or HCV-cured cirrhosis included in HCC surveillance programmes (prospective CirVir and CIRRAL cohorts). Their prognostic value for HCC occurrence was assessed using Fine-Gray models combined into a 7-SNP genetic risk score (GRS). The predictive ability of two clinical scores (a routine non-genetic model determined by multivariate analysis and the external aMAP score) with/without the GRS was evaluated by C-indices. The standardised net benefit was derived from decision curves. RESULTS: Among 1,145 patients, 86 (7.5%) developed HCC after 43.7 months. PNPLA3 and WNT3A-WNT9A variants were independently associated with HCC occurrence. The GRS stratified the population into three groups with progressively increased 5-year HCC incidence (Group 1 [n = 627, 5.4%], Group 2 [n = 276, 10.7%], and Group 3 [n = 242, 15.3%]; p <0.001). The multivariate model identified age, male sex, diabetes, platelet count, gamma-glutamyltransferase levels, albuminemia and the GRS as independent risk factors. The clinical model performance for 5-year HCC prediction was similar to that of the aMAP score (C-Index 0.769). The addition of the GRS to both scores modestly improved their performance (C-Indices of 0.786 and 0.783, respectively). This finding was confirmed by decision curve analyses showing only fair clinical net benefit. CONCLUSIONS: Patients with cirrhosis can be stratified into HCC risk classes by variants affecting lipid turnover and the Wnt-ß-catenin pathway. The incorporation of this genetic information modestly improves the performance of clinical scores. IMPACT AND IMPLICATIONS: The identification of patients at higher risk of developing liver cancer is pivotal to improve the performance of surveillance. Risk assessment can be achieved by combining several clinical and biological parameters used in routine practice. The addition of patients' genetic characteristics can modestly improve this prediction and will ultimately pave the way for precision medicine in patients eligible for HCC surveillance, allowing physicians to trigger personalised screening strategies.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Masculino , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , beta Catenina , Estudos Prospectivos , Cirrose Hepática/complicações , Fatores de Risco , Medição de Risco , Lipídeos
18.
Hepatology ; 77(2): 430-442, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35980227

RESUMO

BACKGROUND AND AIMS: The natural history of hepatocellular adenomas (HCAs) remains to be better described, especially in nonresected patients. We aim to identify the predictive factors of HCA evolution after estrogen-based contraception discontinuation. APPROACH AND RESULTS: We retrospectively included patients with a histological diagnosis of HCA from three centers. Clinical, radiological, and pathological data were collected to identify predictive factors of radiological evolution per Response Evaluation Criteria in Solid Tumors, version 1.1, and occurrence of complications (bleeding, malignant transformation). We built a score using variables that modulate estrogen levels: body mass index and duration of estrogen-based contraception. An external cohort was used to validate this score. 183 patients were included in the cohort, including 161 women (89%) using estrogen-based contraception for a median of 12 years. Thirty percent of patients had at least one HNF1A -inactivated HCA, 45.5% at least one inflammatory HCA, and 11% at least one HCA with activation of ß-catenin (bHCA). Twenty-one symptomatic bleedings (11%) and eleven malignant transformations (6%) occurred. Ages < 37 years old ( p = 0.004) and HCA > 5 cm at imaging were independently associated with symptomatic bleeding ( p = 0.003), whereas a bHCA was associated with malignant transformation ( p < 0.001). After a median follow-up of 5 years, radiological regression was observed in 31%, stabilization in 47%, and progression in 22% of patients. Weight loss was associated with regression ( p < 0.0001) and weight gain with progression ( p = 0.02). The estrogen exposure score predicted radiological regression (odds ratio, 2.33; confidence interval 95%, 1.29-4.19; p = 0.005) with a linear relationship between the rate of estrogen exposure and the probability of regression. This result was confirmed in an external cohort of 72 female patients ( p = 0.003). CONCLUSION: Weight variation is strongly associated with radiological evolution after oral contraception discontinuation. A score of estrogen exposure, easily assessable in clinical practice at diagnosis, predicts regression of HCA.


Assuntos
Adenoma de Células Hepáticas , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Feminino , Adulto , Adenoma de Células Hepáticas/patologia , Neoplasias Hepáticas/patologia , Carcinoma Hepatocelular/patologia , Estudos Retrospectivos , Anticoncepcionais Orais Hormonais/efeitos adversos , Anticoncepção/efeitos adversos , Estrogênios , Hemorragia , Peso Corporal
19.
Am J Hum Genet ; 109(12): 2196-2209, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36459980

RESUMO

The TERT/CLPTM1L risk locus on chromosome 5p15.33 is a pleiotropic cancer risk locus in which multiple independent risk alleles have been identified, across well over ten cancer types. We previously conducted a genome-wide association study in uveal melanoma (UM), which uncovered a role for the TERT/CLPTM1L risk locus in this intraocular tumor and identified multiple highly correlated risk alleles. Aiming to unravel the biological mechanisms in UM of this locus, which contains a domain enriched in active chromatin marks and enhancer elements, we demonstrated the allele-specific enhancer activity of this risk region using reporter assays. In UM, we identified the functional variant rs452384, of which the C risk allele is associated with higher gene expression, increased CLPTM1L expression in UM tumors, and a longer telomere length in peripheral blood mononuclear cells. Electrophoretic mobility shift assays and quantitative mass spectrometry identified NKX2.4 as an rs452384-T-specific binding protein, whereas GATA4 preferentially interacted with rs452384-C. Knockdown of NKX2.4 but not GATA4 resulted in increased TERT and CLPTM1L expression. In summary, the UM risk conferred by the 5p locus is at least partly due to rs452384, for which NKX2.4 presents strong differential binding activity and regulates CLPTM1L and TERT expression. Altogether, our work unraveled some of the complex regulatory mechanisms at the 5p15.33 susceptibility region in UM, and this might also shed light on shared mechanisms with other tumor types affected by this susceptibility region.


Assuntos
Estudo de Associação Genômica Ampla , Neoplasias Uveais , Humanos , Alelos , Leucócitos Mononucleares , Neoplasias Uveais/genética
20.
Nature ; 610(7931): 356-365, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36198802

RESUMO

Hepatocellular carcinoma (HCC), the fourth leading cause of cancer mortality worldwide, develops almost exclusively in patients with chronic liver disease and advanced fibrosis1,2. Here we interrogated functions of hepatic stellate cells (HSCs), the main source of liver fibroblasts3, during hepatocarcinogenesis. Genetic depletion, activation or inhibition of HSCs in mouse models of HCC revealed their overall tumour-promoting role. HSCs were enriched in the preneoplastic environment, where they closely interacted with hepatocytes and modulated hepatocarcinogenesis by regulating hepatocyte proliferation and death. Analyses of mouse and human HSC subpopulations by single-cell RNA sequencing together with genetic ablation of subpopulation-enriched mediators revealed dual functions of HSCs in hepatocarcinogenesis. Hepatocyte growth factor, enriched in quiescent and cytokine-producing HSCs, protected against hepatocyte death and HCC development. By contrast, type I collagen, enriched in activated myofibroblastic HSCs, promoted proliferation and tumour development through increased stiffness and TAZ activation in pretumoural hepatocytes and through activation of discoidin domain receptor 1 in established tumours. An increased HSC imbalance between cytokine-producing HSCs and myofibroblastic HSCs during liver disease progression was associated with increased HCC risk in patients. In summary, the dynamic shift in HSC subpopulations and their mediators during chronic liver disease is associated with a switch from HCC protection to HCC promotion.


Assuntos
Carcinogênese , Carcinoma Hepatocelular , Células Estreladas do Fígado , Neoplasias Hepáticas , Animais , Carcinogênese/patologia , Carcinoma Hepatocelular/patologia , Proliferação de Células , Colágeno Tipo I/metabolismo , Receptor com Domínio Discoidina 1/metabolismo , Progressão da Doença , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Fator de Crescimento de Hepatócito/metabolismo , Hepatócitos , Humanos , Cirrose Hepática/complicações , Neoplasias Hepáticas/patologia , Camundongos , Miofibroblastos/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...