Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 266: 128993, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33246701

RESUMO

Sustainable agricultural, food-related strategies and geographic traceability require understanding of the plant physiological response to stress potentially generated by contaminated soils. Here, we have investigated the effect of contaminated substrate on growth of Vitis vinifera L. plants analysing the distribution of full Rare Earth Elements (REE) spectra in different parts of the plant. Experiments were carried out using pristine plants growing in a handmade substrate (blank experiment) and in REE artificially-enriched soil (spiked experiment). Our results show that both plant mass and REE amount in leaves are not influenced by the substrate enrichment while roots are by one-order of magnitude enriched for three-orders of magnitude enhancement of the soil substrate. This clearly indicates that soil contamination does not significantly influence the REE amount in the aerial parts. However, the spectra of REE normalized changes when the soil is enriched. We found that Light-REE (from La to Gd) are by more than one order of magnitude enriched compared to Heavy-REE (from Tb to Lu plus Y) in spiked experiment showing the specific response of Vitis vinifera L. to the stress generated by soil contamination. We propose that REE distribution spectra is a marker of Vitis vinifera L. substrate of growth and providing a new tool for tracing the geographical origin of agri-food products.


Assuntos
Metais Terras Raras , Poluentes do Solo , Vitis , Metais Terras Raras/análise , Folhas de Planta/química , Solo , Poluentes do Solo/análise
2.
Artigo em Inglês | MEDLINE | ID: mdl-33745748

RESUMO

The Publisher regrets that this article is an accidental duplication of an article that has already been published, http://dx.doi.org/10.1016/j.apgeochem.2021.104892. The duplicate article has therefore been withdrawn. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.

3.
Sci Total Environ ; 687: 978-990, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31412501

RESUMO

Three cubic-meters of CO2-saturated water was injected into a subsurface fractured aquifer in a post-mined area, using a push-pull test protocol. Groundwater samples were collected before and after CO2-injection to quantify geochemical changes. CO2-injection initially reduced the pH of water from 7.3 to 5.7, led to the enrichment of major ions (Ca2+, Mg2+, and alkalinity), and dissolved trace metals (including Fe, Mn, As, and Zn) in the groundwater. Rare earth elements (REE) and yttrium concentrations were also measured in these samples before and after CO2 perturbation, to evaluate their behavior. An enrichment of total Y plus REE (REY) occurred. REY fractionation was observed with higher heavy REE (HREE) enrichment compared to light REE (LREE), and significant variations in La/Yb and Y/Ho ratios were observed following CO2 perturbation. Enrichment by a factor of three was observed for Y, Lu, and Tm, and by nearly one order of magnitude for Dy and Yb. A geochemical model was used to evaluate the amount of REE aqueous ions complexed throughout the experiment. Modeling of the results showed that speciation of dissolved REE with carbonate, along with desorption from iron oxyhydroxide surface were the main factors controlling REE behavior. This study increases an understanding of dissolved REE behavior in the environment, and the potential use for applying iron oxides for REE recovery from mine drainages. Furthermore, the description of REE fractionation patterns may assist in surveying CO2 geological storage sites, surveying underground waste disposal sites, and for understanding the formation of ore deposits and fluid inclusions in geological formations.

4.
Sci Rep ; 8(1): 14080, 2018 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-30237515

RESUMO

The transport of supercritical fluids is a determining factor for several geological processes and fundamental in predicting natural resource accumulation and distribution. Calcite, ubiquitous in most geological environments, may contain supercritical CO2 trapped under the form of fluid inclusions that may move through grain boundaries affecting the rock physical properties. However, despite macroscopic evidence for this process, until recent it was not possible to characterize this process at the nano-scale due to the difficulty of such observations. In this study, we report nanometer-scale observations on calcite crystal surfaces and demonstrate that stress with absence of visible deformation produces fluid leakage from fluid inclusions. Atomic Force Microscopy scanning experiments on freshly cleaved calcite crystals containing visible fluid inclusions revealed the spontaneous formation of nanometer-scale hillocks on flat crystal terraces in only a few minutes, without evidence of surface dissolution. The fact the hillocks formed on flat surface in a short time was unexpected and suggests deposition of material from the inner crystal to the surface through small-scale fluid migration. We estimated the rate of this fluid mobility is by several orders of magnitude higher than the diffusion rate through vacancies estimated in calcite crystals showing that CO2-rich fluids through micro-pore and nano-pore spaces is in reality much higher than previously assumed using current predictive models.

5.
Environ Sci Technol ; 45(15): 6262-7, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21692480

RESUMO

Rapid volcanic eruptions quickly ejecting large amounts of dust provoke the accumulation of heavy metals in people living in surrounding areas. Analyses of bronchoalveolar lavage samples (BAL) collected from people exposed to the paroxysmal 2001 Etna eruption revealed a strong enrichment of many toxic heavy metals. Comparing the BAL to the dust composition of southeastern Sicily, we found that only V, Cr, Mn, Fe, Co, and U enrichment could be related to the volcanic event, whereas Ni, Cu, Cd, and Pb contents come from the dissolution of particles of anthropogenic origin. Furthermore, the nature of these inhaled anthropogenic particles was revealed by anomalous La and partially Ce concentrations in BAL that were consistent with a mixture of road dust and petroleum refinery emissions. Our results indicate that trace element distribution in BAL is a suitable tracer of human exposure to different sources of inhaled atmospheric particulates, allowing investigations into the origin of source materials inhaled by people subjected to atmospheric fallout.


Assuntos
Atmosfera/química , Líquido da Lavagem Broncoalveolar/química , Poeira/análise , Monitoramento Ambiental/métodos , Exposição por Inalação/análise , Oligoelementos/análise , Humanos , Padrões de Referência , Sicília , Solubilidade , Erupções Vulcânicas/análise
6.
Environ Sci Technol ; 39(22): 8646-52, 2005 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-16323758

RESUMO

Uranium mining and processing at Lagoa Real (Bahia, Brazil) started in 2000. Hydrogeochemical monitoring carried out from 1999 to 2001 revealed generally good quality of the water resources outside and inside the mineralized area. No chemical contamination in waters for domestic uses was observed. Hydrochemical characteristics did not vary significantly after 1 year of U exploitation, as compared to premining conditions. Due to the short time of mining, the results cannot exclude future variations in water quality. Leaching experiments helped to describe processes of ore and waste degradation. Sulfate was identified as an indicator for different types of contamination. Potential hazards related to local climate (hot rainy season) were identified. They indicate that tailings derived from the ore processing, destabilized by sulfuric acid attack, may induce acidification and salinization in the surrounding environment. Another potential source of environmental impact could be linked to local radium-rich mineralization, originating radon emission.


Assuntos
Monitoramento Ambiental , Mineração , Urânio/análise , Contaminação Radioativa da Água/análise , Brasil , Radônio/análise , Radônio/metabolismo , Medição de Risco , Abastecimento de Água/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...