Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Photochem Photobiol B ; 219: 112206, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33975271

RESUMO

Every year 15-50% of cereals all around the world are lost due to fungal contamination and deterioration. In addition, 25% of crops, which are used for human and animal consumption, are contaminated with mycotoxins. It is obvious, that more effective and sustainable technologies for better microbial control of crops are required. For this purpose we evaluated antibacterial and antifungal activity of ZnO nanoparticles (NPs) (10-3-5 × 10-3M) activated with visible light (405 nm, 18-30 J/cm2). Obtained data indicated that this treatment can inactivate human pathogen E. coli B by 6 log CFU without any possibility to regrowth after treatment. Wheat pathogen Fusarium oxysporum was inactivated by 51.7%. Results indicated that reactive oxygen species took place in the mechanisms of inactivation. Moreover, visible light activated ZnO NPs reduced the population of mesophiles on the surface of grains by 2.5 log CFU/g, inoculated E. coli- by 2.0 log CFU/g and naturally distributed fungi-by 2.1 log CFU/g. This treatment had no impact on visual quality of grains, did not inhibit grain germination rate and slightly promoted grain seedling growth. Concluding, the use of visible light driven photocatalysis in ZnO nanoparticles has huge potential to control plant pathogens, reduce food-borne diseases and subsequently enhance the sustainability in agriculture, meeting the increasing demands of a growing world population.


Assuntos
Luz , Nanopartículas Metálicas/química , Triticum/microbiologia , Óxido de Zinco/química , Catálise/efeitos da radiação , Escherichia coli/efeitos dos fármacos , Escherichia coli/efeitos da radiação , Fusarium/efeitos dos fármacos , Fusarium/isolamento & purificação , Fusarium/efeitos da radiação , Germinação/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Tamanho da Partícula , Plântula/efeitos dos fármacos , Triticum/crescimento & desenvolvimento
2.
J Biophotonics ; 13(11): e202000144, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32729182

RESUMO

Pathogenic strains of bacteria are causing various illnesses all around the world and have a major socio-economic impact. Thus, fast- and low-cost methods for the microbial control of foods are needed. One of them might be photosensitization. This study looks deeper into the mechanism of Escherichia coli damage by chlorophyllin-based photosensitization. Fluorimetric data indicate that after 15 minute incubation with chlorophyllin (Chl) (1.5 × 10-5 M Chl) 0.73 ± 0.03 µM of this compound was associated with E. coli cell surface. After photoactivation (405 nm, 6-30 J/cm2 ) significant reduction (88.2%) of bacterial viability was observed. Higher concentration of Chl (5 × 10-4 M Chl) reduced viability of bacteria more than by 98%. Results indicated that reactive oxygen species (ROS) took place in this inactivation. Colloidal surface enhanced Raman scattering (SERS) spectroscopy was employed to detect the molecular changes in the treated bacteria. It was found that Chl-based based photosensitization triggers multiple surface structure changes in E. coli what induce lethal unrepairable damages and inactivation of pathogen.


Assuntos
Clorofilídeos , Escherichia coli , Clorofilídeos/farmacologia , Luz , Viabilidade Microbiana
3.
J Photochem Photobiol B ; 203: 111656, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31676121

RESUMO

Strawberries are one of the most common and important fruits in the world, widely investigated for their nutritional and nutraceutical properties. However, after the emergence of several outbreaks of foodborne diseases some concerns regarding the microbiological safety of fresh strawberries have increased in recent years. In this paper new insights, based on application of ZnO nanoparticles (NPs) as alternative to chemical fungicides in the fields for preharvest preservation of strawberries are presented. Antifungal activity of ZnO NPs was tested on main strawberry plant pathogen Botrytis cinerea. Obtained data indicated that used ZnO NPs (5 × 10-3 M) in the dark just insignificantly (12%) inhibited the radial growth of B. cinerea. But photoactivated ZnO NPs (5 × 10-3 M, 405 nm, 34 J/cm2) inhibited the growth of B. cinera by 80%. Real-time field experiments revelead, that spraying of ZnO NPs in the strawberry field in sunny day reduced Botrytis incidences by 43%, enhanced the crop production by 28.5% and stoped the spoilage of harvested fruits during storage by 8 days, if compare with control. No harm to crowns and leaves of strawberry plant have been found, however this treatment increased the growth of inflorescence (37.5%) and reduced the growth of runners (32.8%). For comparison, spraying of conventionqal chemical fungicide fenhexamid (FEN) reduced Botrytis incidences in the same level as ZnO NPs, increased the harvest by 21.9% and delayed the spoilage of fruits by 8 days. The presented results look highly promising, since ZnO NPs in the presence of sunlight, activated by UV and visible light can protect strawberry fruits from Botrytis infection more effectively than conventional fungicide fenhexamid. This treatment significantly increased crop production and reduced spoilage of strawberries. It looks like ZnO NPs have great potential in the future to replace chemical fungicides.


Assuntos
Fragaria/crescimento & desenvolvimento , Nanopartículas Metálicas/química , Luz Solar , Óxido de Zinco/química , Amidas/farmacologia , Antifúngicos/química , Antifúngicos/farmacologia , Botrytis/efeitos dos fármacos , Botrytis/efeitos da radiação , Catálise , Proteção de Cultivos , Nanopartículas Metálicas/toxicidade , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle
4.
Photochem Photobiol Sci ; 18(10): 2521-2530, 2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31482167

RESUMO

Sprouted seeds are gaining popularity worldwide due to their high nutritional value. At the same time, they are among the most highly contaminated fresh produce and have been recognized as the primary source of food-borne pathogens, such as E. coli O157 and harmful microfungi. The antifungal and antibacterial properties of chlorophyllin-based photosensitization in vitro together with successful application of this treatment for microbial control in wheat sprouts have been investigated. First, we examined the antimicrobial efficiency of chlorophyllin (Chl, 1.5 × 10-5-5 × 10-3 M) activated in vitro by visible light (405 nm, radiant exposure: 18 J cm-2) against the food-borne pathogen Escherichia coli and plant pathogen Fusarium oxysporum. Results revealed that this treatment (1.5 × 10-5 M Chl, incubation time 1 h, 405 nm, radiant exposure: 18 J cm-2) can reduce the E. coli population by 95%. Moreover, at higher chlorophyllin concentrations (5 × 10-4-5 × 10-3 M Chl), it is possible to delay the growth of F. oxysporum by 51-74%. The decontamination of wheat seeds by chlorophyllin-based photosensitization (5 × 10-4 M Chl, 405 nm, radiant exposure: 18 J cm-2) remarkably reduced the viability of surface-attached mesophilic bacteria (∼2.5log CFU g-1), E. coli (∼1.5log CFU g-1) and yeasts/fungi (∼1.5log CFU g-1). Moreover, SEM images confirmed that this treatment did not damage the grain surface microstructure. Most importantly, Chl-based photosensitization did not reduce the seed germination rate or seedling growth and had no impact on the visual qualities of sprouts. In conclusion, the chlorophyllin-based photosensitization treatment, being nonthermal, environmentally friendly and cost-effective, has huge potential for microbial control of highly contaminated germinated wheat sprouts and seeds used to produce sprouts, especially in organic farming.


Assuntos
Clorofilídeos/farmacologia , Escherichia coli/efeitos dos fármacos , Fusarium/efeitos dos fármacos , Fármacos Fotossensibilizantes/farmacologia , Triticum/microbiologia , Antibacterianos/química , Antibacterianos/farmacologia , Clorofilídeos/química , Germinação , Luz , Fármacos Fotossensibilizantes/química , Sementes/crescimento & desenvolvimento , Sementes/microbiologia , Triticum/crescimento & desenvolvimento
5.
Food Technol Biotechnol ; 57(1): 126-132, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31316285

RESUMO

Due to the high amount of biologically active compounds, basil is one of the most popular herbs. However, several outbreaks have been reported in the world due to the consumption of basil contaminated with different food pathogens. The aim of this study is to apply nonthermal and ecologically friendly approach based on photosensitization for microbial control of basil which was naturally contaminated with mesophils and inoculated with thermoresistant food pathogen Listeria monocytogenes 56Ly. The obtained data indicate that soaking the basil in 1.5·10-4 M chlorophyllin (Chl) for 15 min and illumination with light for 15 min at 405 nm significantly reduced total aerobic microorganisms on basil by 1.3 log CFU/g, and thermoresistant L. monocytogenes 56Ly from 6.1 log CFU/g in control to 4.5 log CFU/g in the treated samples. It is important to note that this treatment had no impact on enzymatic activity of polyphenol oxidase and pectinesterase. Results obtained in this study support the idea that photosensitization technique with its high selectivity, antimicrobial efficiency and nonthermal nature can serve in the future for the development of safe nonthermal and environmentally friendly preservation technology for different fruits and vegetables.

6.
J Photochem Photobiol B ; 182: 130-136, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29665495

RESUMO

The aim of this study is to evaluate the antimicrobial efficiency of Chlorophyllin-based photosensitization for microbial control of cherry tomatoes. Chlorophyllin-based photosensitization (1.5 × 10-4 M, 3 J/cm2) significantly (2.4 log) reduced the population of naturally distributed surface attached various mesophilic bacteria (microbiota) on tomatoes. Moreover, the population of thermoresistant strains of food pathogens Bacillus cereus and Listeria monocytogenes inoculated on tomatoes was reduced by 1.5 log and 1.6 log respectively after this treatment. Conventional washing with water reduced the population of Listeria on tomato by 0.6 log and Bacillus by 0.8 log. In comparison, hypochlorite treatment reduced Listeria on tomatoes by 1.4 log and Bacillus by 1.6 log. The regrowth of mesophilic bacteria and thermoresistant Listeria on the surface of tomatoes after photosensitization was delayed for 28 days and 14 days respectively. Moreover, photosensitization did not induce harmful effects on main parameter of nutritional quality of tomatoes, i.e. antioxidant activity of tomatoes remained unchanged (27.5 mM Fe2+/kg). Eventually, this treatment did not induce visible thermal effects in fruit matrix and prolonged the shelf-life of tomatoes by 4 days. In our opinion, chlorophyllin-based photosensitization has a huge potential as alternative to not-chemical food preservation technology, saving water and energy. In addition, fast development of light emitting diodes (LED's) and light sources based on LED technologies make this treatment low cost, environmentally friendly and easy to maintain.


Assuntos
Bacillus cereus/efeitos dos fármacos , Clorofilídeos/farmacologia , Manipulação de Alimentos/métodos , Microbiologia de Alimentos , Listeria monocytogenes/efeitos dos fármacos , Transtornos de Fotossensibilidade , Solanum lycopersicum/microbiologia , Bacillus cereus/efeitos da radiação , Clorofilídeos/química , Listeria monocytogenes/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...