Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 215
Filtrar
1.
Front Genet ; 14: 1244983, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37811140

RESUMO

Optical genome mapping (OGM), which allows analysis of ultra-high molecular weight (UHMW) DNA molecules, represents a response to the restriction created by short-read next-generation-sequencing, even in cases where the causative variant is a neutral copy-number-variant insensitive to quantitative investigations. This study aimed to provide a molecular diagnosis to a boy with Marfan syndrome (MFS) and intellectual disability (ID) carrying a de novo translocation involving chromosomes 3, 4, and 13 and a 1.7 Mb deletion at the breakpoint of chromosome 3. No FBN1 alteration explaining his Marfan phenotype was highlighted. UHMW gDNA was isolated from both the patient and his parents and processed using OGM. Genome assembly was followed by variant calling and annotation. Multiple strategies confirmed the results. The 3p deletion, which disrupted ROBO2, (MIM*602431) included three copy-neutral insertions. Two came from chromosome 13; the third contained 15q21.1, including the FBN1 from intron-45 onwards, thus explaining the MFS phenotype. We could not attribute the ID to a specific gene variant nor to the reshuffling of topologically associating domains (TADs). Our patient did not have vesicular reflux-2, as reported by missense alterations of ROBO2 (VUR2, MIM#610878), implying that reduced expression of all or some isoforms has a different effect than some of the point mutations. Indeed, the ROBO2 expression pattern and its role as an axon-guide suggests that its partial deletion is responsible for the patient's neurological phenotype. Conclusion: OGM testing 1) highlights copy-neutral variants that could remain invisible if no loss of heterozygosity is observed and 2) is mandatory before other molecular studies in the presence of any chromosomal rearrangement for an accurate genotype-phenotype relationship.

2.
Front Genet ; 14: 1231434, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37636262

RESUMO

We report a 7-year-old boy born with epidermal nevi (EN) arranged according to Blaschko's lines involving the face and head, right upper limb, chest, and left lower limb, who developed a left paratesticular embryonal rhabdomyosarcoma at 18 months of age. Parallel sequencing identified a gain-of-function variant (c.37G>C, p.Gly13Arg) of HRAS in both epidermal nevus and tumor but not in leukocytes or buccal mucosal epithelial cells, indicating its postzygotic origin. The variant accounted for 33% and 92% of the total reads in the nevus and tumor DNA specimens, respectively, supporting additional somatic hits in the latter. DNA methylation (DNAm) profiling of the tumor documented a signature consistent with embryonal rhabdomyosarcoma and CNV array analysis inferred from the DNAm arrays and subsequent MLPA analysis demonstrated copy number gains of the entire paternal chromosome 11 carrying the mutated HRAS allele, likely as the result of paternal unidisomy followed by subsequent gain(s) of the paternal chromosome in the tumor. Other structural rearrangements were observed in the tumours, while no additional pathogenic variants affecting genes with role in the RAS-MAPK and PI3K-AKT-MTOR pathways were identified. Our findings provide further evidence of the contribution of "gene dosage" to the multistep process driving cell transformation associated with hyperactive HRAS function.

4.
Am J Hum Genet ; 110(4): 681-690, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-36996813

RESUMO

The blood-brain barrier (BBB) is an essential gatekeeper for the central nervous system and incidence of neurodevelopmental disorders (NDDs) is higher in infants with a history of intracerebral hemorrhage (ICH). We discovered a rare disease trait in thirteen individuals, including four fetuses, from eight unrelated families associated with homozygous loss-of-function variant alleles of ESAM which encodes an endothelial cell adhesion molecule. The c.115del (p.Arg39Glyfs∗33) variant, identified in six individuals from four independent families of Southeastern Anatolia, severely impaired the in vitro tubulogenic process of endothelial colony-forming cells, recapitulating previous evidence in null mice, and caused lack of ESAM expression in the capillary endothelial cells of damaged brain. Affected individuals with bi-allelic ESAM variants showed profound global developmental delay/unspecified intellectual disability, epilepsy, absent or severely delayed speech, varying degrees of spasticity, ventriculomegaly, and ICH/cerebral calcifications, the latter being also observed in the fetuses. Phenotypic traits observed in individuals with bi-allelic ESAM variants overlap very closely with other known conditions characterized by endothelial dysfunction due to mutation of genes encoding tight junction molecules. Our findings emphasize the role of brain endothelial dysfunction in NDDs and contribute to the expansion of an emerging group of diseases that we propose to rename as "tightjunctionopathies."


Assuntos
Encefalopatias , Moléculas de Adesão Celular , Malformações do Sistema Nervoso , Transtornos do Neurodesenvolvimento , Animais , Camundongos , Alelos , Encefalopatias/genética , Moléculas de Adesão Celular/genética , Células Endoteliais/metabolismo , Hemorragias Intracranianas/genética , Malformações do Sistema Nervoso/genética , Transtornos do Neurodesenvolvimento/genética , Junções Íntimas/genética , Humanos
5.
Genes (Basel) ; 14(3)2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36980822

RESUMO

Pathogenic variants in RASA1 are typically associated with a clinical condition called "capillary malformation-arteriovenous malformation" (CM-AVM) syndrome, an autosomal dominant genetic disease characterized by a broad phenotypic variability, even within families. In CM-AVM syndrome, multifocal capillary and arteriovenous malformations are mainly localized in the central nervous system, spine and skin. Although CM-AVM syndrome has been widely described in the literature, only 21 cases with prenatal onset of clinical features have been reported thus far. Here, we report four pediatric cases of molecularly confirmed CM-AVM syndrome which manifested during the prenatal period. Polyhydramnios, non-immune hydrops fetalis and chylothorax are only a few possible aspects of this condition, but a correct interpretation of these prenatal signs is essential due to the possible fatal consequences of unrecognized encephalic and thoracoabdominal deep vascular malformations in newborns and in family members carrying the same RASA1 variant.


Assuntos
Malformações Arteriovenosas , Mancha Vinho do Porto , Feminino , Humanos , Recém-Nascido , Criança , Gravidez , Mutação , Proteína p120 Ativadora de GTPase/genética , Mancha Vinho do Porto/genética , Mancha Vinho do Porto/diagnóstico , Mancha Vinho do Porto/patologia , Malformações Arteriovenosas/diagnóstico por imagem , Malformações Arteriovenosas/genética , Proteínas Ativadoras de GTPase/genética
6.
Nat Commun ; 14(1): 1475, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36928426

RESUMO

Split-Hand/Foot Malformation type 3 (SHFM3) is a congenital limb malformation associated with tandem duplications at the LBX1/FGF8 locus. Yet, the disease patho-mechanism remains unsolved. Here we investigate the functional consequences of SHFM3-associated rearrangements on chromatin conformation and gene expression in vivo in transgenic mice. We show that the Lbx1/Fgf8 locus consists of two separate, but interacting, regulatory domains. Re-engineering of a SHFM3-associated duplication and a newly reported inversion in mice results in restructuring of the chromatin architecture. This leads to ectopic activation of the Lbx1 and Btrc genes in the apical ectodermal ridge (AER) in an Fgf8-like pattern induced by AER-specific enhancers of Fgf8. We provide evidence that the SHFM3 phenotype is the result of a combinatorial effect on gene misexpression in the developing limb. Our results reveal insights into the molecular mechanism underlying SHFM3 and provide conceptual framework for how genomic rearrangements can cause gene misexpression and disease.


Assuntos
Fator 8 de Crescimento de Fibroblasto , Rearranjo Gênico , Deformidades Congênitas dos Membros , Animais , Camundongos , Expressão Gênica , Proteínas de Homeodomínio/genética , Deformidades Congênitas dos Membros/genética , Fenótipo , Sequências Reguladoras de Ácido Nucleico , Fatores de Transcrição/genética
7.
Eur J Med Genet ; 65(12): 104639, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36206969

RESUMO

Variants in SCN2A, encoding the voltage-gated sodium channel Nav1.2, are commonly associated with developmental and epileptic encephalopathy. Although animal studies demonstrated a role for Nav1.2 in intraventricular conduction, heart anomalies have been only occasionally described in patients with SCN2A variants. In this report we trace the prenatal and neonatal history of a fetus/newborn with a de novo pathogenic variant in the SCN2A gene identified by prenatal trio whole-exome sequencing (WES). In addition to more typically SCN2A-associated neurological manifestations, the patient showed sustained tachyarrhythmia, potentially expanding the phenotypic spectrum associated with SCN2A variants and raising the question of whether cardiological assessment and prompt pharmacological intervention in SCN2A channelopathies to avoid heart complications might be beneficial. To the best of our knowledge, this represents the first clinical description of a SCN2A phenotype in a prenatal setting, as well as the first SCN2A diagnosis achieved by prenatal trio-WES approach.


Assuntos
Arritmias Cardíacas , Canal de Sódio Disparado por Voltagem NAV1.2 , Humanos , Canal de Sódio Disparado por Voltagem NAV1.2/genética , Fenótipo , Arritmias Cardíacas/genética , Mutação
8.
Nat Commun ; 13(1): 6470, 2022 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-36309531

RESUMO

Structural variants are a common cause of disease and contribute to a large extent to inter-individual variability, but their detection and interpretation remain a challenge. Here, we investigate 11 individuals with complex genomic rearrangements including germline chromothripsis by combining short- and long-read genome sequencing (GS) with Hi-C. Large-scale genomic rearrangements are identified in Hi-C interaction maps, allowing for an independent assessment of breakpoint calls derived from the GS methods, resulting in >300 genomic junctions. Based on a comprehensive breakpoint detection and Hi-C, we achieve a reconstruction of whole rearranged chromosomes. Integrating information on the three-dimensional organization of chromatin, we observe that breakpoints occur more frequently than expected in lamina-associated domains (LADs) and that a majority reshuffle topologically associating domains (TADs). By applying phased RNA-seq, we observe an enrichment of genes showing allelic imbalanced expression (AIG) within 100 kb around the breakpoints. Interestingly, the AIGs hit by a breakpoint (19/22) display both up- and downregulation, thereby suggesting different mechanisms at play, such as gene disruption and rearrangements of regulatory information. However, the majority of interpretable genes located 200 kb around a breakpoint do not show significant expression changes. Thus, there is an overall robustness in the genome towards large-scale chromosome rearrangements.


Assuntos
Cromatina , Genoma , Humanos , Genoma/genética , Sequência de Bases , Mapeamento Cromossômico , Células Germinativas
9.
Eur J Med Genet ; 65(11): 104596, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36064004

RESUMO

We describe a 5-year-old girl who was diagnosed at birth with 18q de novo homogeneous deletion at G-banding karyotype. Her clinical condition, characterized by hypotonia, psychomotor retardation, short stature, deafness secondary to bilateral atresia of the external auditory canals, was in agreement with the 18q deletion syndrome though presence of coloboma of a single eye only suggested a mosaic condition as an unusual sign. By combining multiple technologies including array-CGH, FISH, and WGS, we found that the terminal deletion 18q21.32q23 (21 Mb) was in segmental mosaicism of the proximal region 18q21.31q21.32 (2.7 Mb), which showed a variable number of copies: one, two, or three, in 7, 41 and 55% of the cells respectively. Breakpoint junction analysis demonstrated the presence of an inv-dup del (18q) with a disomic segment of 4.7 kb between the inverted and non-inverted copies of the duplicated region 18q21.31q21.32. From these results, we propose that all three types of abnormal chr18 (the inv-dup del and the two 18q terminal deletions of different sizes) arisen from breaks in a dicentric mirror chromosome 18q, either in more than one embryo cell or from subsequent breaking-fusion-bridge cycles. The duplication region was with identical polymorphisms as in all non-recurrent inv-dup del rearrangements though, in contrast with most of them, the 18q abnormality was of maternal origin. Taking into account that distal 18q deletions are not rarely associated with inv-dup del(18q) cell lines, and that the non-disjunction of chromosome 18 takes place especially at maternal meiosis II rather than meiosis I, multiple rescue events starting from trisomic zygotes could be considered alternative to the postmitotic ones. From the clinical point of view, our case, as well as those of del(18q) in mosaic with the dic(18q), shows that the final phenotype is the sum of the different cell lines that acted on embryonic development with signs typical of both the 18q deletion syndrome and trisomy 18. Asymmetrical malformations, such as coloboma of the iris only in the right eye, confirm the underlying mosaicism regardless of whether it is still detectable in the blood.


Assuntos
Cromossomos Humanos Par 18 , Coloboma , Linhagem Celular , Deleção Cromossômica , Transtornos Cromossômicos , Inversão Cromossômica , Cromossomos Humanos Par 18/genética , Feminino , Humanos , Mosaicismo , Gravidez
10.
J Clin Med ; 11(14)2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35887945

RESUMO

BACKGROUND: We report on a 20-week-old female fetus with a diaphragmatic hernia and other malformations, all of which appeared after the first-trimester ultrasound. METHODS AND RESULTS: Whole trio exome sequencing (WES) on cell-free fetal DNA (cff-DNA) revealed a de novo frameshift variant of the X-linked STAG2 gene. Loss-of-function (LoF) STAG2 variants cause either holoprosencephaly (HPE) or Mullegama-Klein-Martinez syndrome (MKMS), are de novo, and only affect females, indicating male lethality. In contrast, missense mutations associate with milder forms of MKMS and follow the classic X-linked recessive inheritance transmitted from healthy mothers to male offspring. STAG2 has been reported to escape X-inactivation, suggesting that disease onset in LoF females is dependent on inadequate dosing for at least some of the transcripts, as is the case with a part of the autosomal dominant diseases. Missense STAG2 variants produce a quantity of transcripts, which, while resulting in a different protein, leads to disease only in hemizygous males. Similar inheritance patterns are described for other escapee genes. CONCLUSIONS: This study confirms the advantage of WES on cff-DNA and emphasizes the role of the type of the variant in X-linked disorders.

11.
Eur J Med Genet ; 65(8): 104532, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35724817

RESUMO

De novo distal deletions are structural variants considered to be already present in the zygote. However, investigations especially in the prenatal setting have documented that they are often in mosaic with cell lines in which the same deleted chromosome shows different types of aberrations such as: 1) neutral copy variants with loss of heterozygosity that replace the deleted region with equivalent portions of the homologous chromosome and create distal uniparental disomy (UPD); 2) derivative chromosomes where the deleted one ends with the distal region of another chromosome or has the shape of a ring; 3) U-type mirror dicentric or inv-dup del rearrangements. Unstable dicentrics had already been entailed as causative of terminal deletions even when no trace of the reciprocal inv-dup del had been detected. To clarify the mechanism of origin of distal deletions, we examined PubMed using as keywords: complex/mosaic chromosomal deletions, distal UPD, U-type dicentrics, inv-dup del chromosomes, excluding the recurrent inv-dup del(8p)s which are known to originate by NAHR at the maternal meiosis. The literature has shown that U-type dicentrics leading to nearly complete trisomy and therefore incompatible with zygotic survival underlie many types of de novo unbalanced rearrangements, including terminal deletions. In the early embryo, the position of the postzygotic breaks of the dicentric, the different ways of acquiring telomeres by the broken portions and the selection of the most favorable cell lines in the different tissues determine the prevalence of one or the other rearrangement. Multiple lines with simple terminal deletions, inv-dup dels, unbalanced translocations and segmental UPDs can coexist in various mosaic combinations although it is rare to identify them all in the blood. Regarding the origin of the dicentric, among the 30 cases of non-recurrent inv-dup del with sufficient genotyping information, paternal origin was markedly prevalent with consistently identical polymorphisms within the duplication region, regardless of parental origin. The non-random parental origin made any postzygotic origin unlikely and suggested the occurrence of these dicentrics mainly in spermatogenesis. This study strengthens the evidence that non-recurrent de novo structural rearrangements are often secondary to the rescue of a zygotic genome incompatible with embryo survival.


Assuntos
Transtornos Cromossômicos , Zigoto , Aberrações Cromossômicas , Deleção Cromossômica , Transtornos Cromossômicos/genética , Inversão Cromossômica , Feminino , Humanos , Masculino , Gravidez , Telômero
12.
Front Genome Ed ; 4: 843885, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35465025

RESUMO

Background: Gene correction via homology directed repair (HDR) in patient-derived induced pluripotent stem (iPS) cells for regenerative medicine are becoming a more realistic approach to develop personalized and mutation-specific therapeutic strategies due to current developments in gene editing and iPSC technology. Cystic fibrosis (CF) is the most common inherited disease in the Caucasian population, caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. Since CF causes significant multi-organ damage and with over 2,000 reported CFTR mutations, CF patients could be one prominent population benefiting from gene and cell therapies. When considering gene-editing techniques for clinical applications, seamless gene corrections of the responsible mutations, restoring native "wildtype" DNA sequence without remnants of drug selectable markers or unwanted DNA sequence changes, would be the most desirable approach. Result: The studies reported here describe the seamless correction of the W1282X CFTR mutation using CRISPR/Cas9 nickases (Cas9n) in iPS cells derived from a CF patient homozygous for the W1282X Class I CFTR mutation. In addition to the expected HDR vector replacement product, we discovered another class of HDR products resulting from vector insertion events that created partial duplications of the CFTR exon 23 region. These vector insertion events were removed via intrachromosomal homologous recombination (IHR) enhanced by double nicking with CRISPR/Cas9n which resulted in the seamless correction of CFTR exon 23 in CF-iPS cells. Conclusion: We show here the removal of the drug resistance cassette and generation of seamless gene corrected cell lines by two independent processes: by treatment with the PiggyBac (PB) transposase in vector replacements or by IHR between the tandemly duplicated CFTR gene sequences.

13.
Medicine (Baltimore) ; 100(51): e28360, 2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-34941153

RESUMO

ABSTRACT: Dercum's disease (DD), or adiposis dolorosa, is a rare condition of unknown etiology characterized by growth of painful subcutaneous adipose tissue. No specific treatment exists. Pain is often invalidating and resistant to analgesic drugs. We tested the efficacy of Frequency Rhythmic Electrical Modulation System (FREMS) therapy on pain relief. Subcutaneous biopsies were performed for genetic analysis.Nine DD patients were enrolled. Five cycles of FREMS at 3-month intervals during 1 year were administered. Visual analogue scale (VAS), Bartel Index Questionnaire and Short Form 36 questionnaire were used to measure pain and general health status at baseline, 6 and 12 months. Dual-energy X-ray absorptiometry (DEXA) quantified fat mass. Next-Generation Sequencing (NGS) was performed on adipose tissue biopsies and peripheral blood sample to search for somatic variants and specific protein pathway mutation.Seven patients were included in the final analysis. FREMS induced a reduction in VAS score (from 92 to 52.5, P = .0597) and a significant improvement in SF-36 domains (Physical functioning, Role limitation due to physical health, Body pain, Vitality, Social functioning, P < .05). No modification in anthropometrics and DEXA values was observed. The analysis of the mitochondrial Displacement loop (D-loop) region confirmed the clonality of all lipomatous lesions. The presence of the mitochondrially encoded tRNA-Lysine (MT-TK) m.8344A>G variant, occasionally identified in patients with multiple symmetric lipomatosis, was excluded in all subjects. On the other hand, we observed variants in genes belonging to signaling pathways involved in cell cycle and proliferation (Phosphoinositide 3-kinase/AKT/mTOR, MAPK/ERK, and Hippo).FREMS can be a useful tool to alleviate pain and improve overall quality of life in patients with DD. Genetic analysis highlighted the molecular heterogeneity of lipomas.


Assuntos
Adipose Dolorosa/terapia , Lipoma/genética , Estimulação Elétrica Nervosa Transcutânea , Adipose Dolorosa/genética , Adipose Dolorosa/psicologia , Adulto , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Dor , Manejo da Dor , Projetos Piloto , Qualidade de Vida , Estimulação Elétrica Nervosa Transcutânea/efeitos adversos
15.
Diagnostics (Basel) ; 11(10)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34679599

RESUMO

Liver disease in pregnancy may present as an acute condition related to the gestational period, characterized by pruritus, jaundice, and abnormal liver function. The disease may be misdiagnosed with other liver diseases, some of which may have consequences for fetal health. It is therefore advisable to implement rapid diagnostic strategies to provide information for the management of pregnancy in these conditions. We report the case of a healthy woman with a twin pregnancy from homologous in vitro fertilization (IVF), who in the third trimester presented jaundice and malaise. Biochemical investigations and liver hyperechogenicity raised the suspicion of acute fatty liver disease of pregnancy (AFLP). Non-invasive prenatal whole-exome sequencing (WES) in the trio identified the Phe305Ile heterozygous variant in the ATP8B1 gene. Considering the twin pregnancy, the percentage of the variant versus the wild allele was of 31%, suggesting heterozygosity present in the mother alone. This analysis showed that the mother was affected by benign recurrent intrahepatic cholestasis of pregnancy (ICP1: # 147480) and indicated the opportunity to anticipate childbirth to avoid worsening of the mother's health. WES after the birth of the twins confirmed the molecular data.

16.
Mol Cell ; 81(22): 4663-4676.e8, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34637754

RESUMO

The heterogeneous family of complexes comprising Polycomb repressive complex 1 (PRC1) is instrumental for establishing facultative heterochromatin that is repressive to transcription. However, two PRC1 species, ncPRC1.3 and ncPRC1.5, are known to comprise novel components, AUTS2, P300, and CK2, that convert this repressive function to that of transcription activation. Here, we report that individuals harboring mutations in the HX repeat domain of AUTS2 exhibit defects in AUTS2 and P300 interaction as well as a developmental disorder reflective of Rubinstein-Taybi syndrome, which is mainly associated with a heterozygous pathogenic variant in CREBBP/EP300. Moreover, the absence of AUTS2 or mutation in its HX repeat domain gives rise to misregulation of a subset of developmental genes and curtails motor neuron differentiation of mouse embryonic stem cells. The transcription factor nuclear respiratory factor 1 (NRF1) has a novel and integral role in this neurodevelopmental process, being required for ncPRC1.3 recruitment to chromatin.


Assuntos
Encéfalo/metabolismo , Proteína de Ligação a CREB/genética , Proteínas do Citoesqueleto/metabolismo , Proteína p300 Associada a E1A/genética , Células-Tronco Embrionárias/metabolismo , Fator 1 Nuclear Respiratório/metabolismo , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular , Cromatina/química , Feminino , Genômica , Células HEK293 , Heterozigoto , Humanos , Masculino , Camundongos , Neurônios/metabolismo , Ligação Proteica , Domínios Proteicos , Proteômica , Ativação Transcricional
17.
Genes (Basel) ; 12(8)2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34440382

RESUMO

Lissencephaly describes a group of conditions characterized by the absence of normal cerebral convolutions and abnormalities of cortical development. To date, at least 20 genes have been identified as involved in the pathogenesis of this condition. Variants in CEP85L, encoding a protein involved in the regulation of neuronal migration, have been recently described as causative of lissencephaly with a posterior-prevalent involvement of the cerebral cortex and an autosomal dominant pattern of inheritance. Here, we describe a 3-year-old boy with slightly delayed psychomotor development and mild dysmorphic features, including bitemporal narrowing, protruding ears with up-lifted lobes and posterior plagiocephaly. Brain MRI at birth identified type 1 lissencephaly, prevalently in the temporo-occipito-parietal regions of both hemispheres with "double-cortex" (Dobyns' 1-2 degree) periventricular band alterations. Whole-exome sequencing revealed a previously unreported de novo pathogenic variant in the CEP85L gene (NM_001042475.3:c.232+1del). Only 20 patients have been reported as carriers of pathogenic CEP85L variants to date. They show lissencephaly with prevalent posterior involvement, variable cognitive deficits and epilepsy. The present case report indicates the clinical variability associated with CEP85L variants that are not invariantly associated with severe phenotypes and poor outcome, and underscores the importance of including this gene in diagnostic panels for lissencephaly.


Assuntos
Lissencefalias Clássicas e Heterotopias Subcorticais em Banda/complicações , Proteínas do Citoesqueleto/genética , Lisencefalia/genética , Proteínas de Fusão Oncogênica/genética , Fenótipo , Pré-Escolar , Heterozigoto , Humanos , Lisencefalia/complicações , Masculino , Sequenciamento do Exoma
18.
Genes (Basel) ; 12(6)2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34200686

RESUMO

Since 2011, eight males with an X-linked recessive disorder (Ogden syndrome, MIM #300855) associated with the same missense variant p.(Ser37Pro) in the NAA10 gene have been described. After the advent of whole exome sequencing, many NAA10 variants have been reported as causative of syndromic or non-syndromic intellectual disability in both males and females. The NAA10 gene lies in the Xq28 region and encodes the catalytic subunit of the major N-terminal acetyltransferase complex NatA, which acetylates almost half the human proteome. Here, we present a young female carrying a de novo NAA10 [NM_003491:c.247C > T, p.(Arg83Cys)] variant. The 18-year-old girl has severely delayed motor and language development, autistic traits, postnatal growth failure, facial dysmorphisms, interventricular septal defect, neuroimaging anomalies and epilepsy. Our attempt is to expand and compare genotype-phenotype correlation in females with NAA10-related syndrome. A detailed clinical description could have relevant consequences for the clinical management of known and newly identified individuals.


Assuntos
Anormalidades Craniofaciais/genética , Deficiências do Desenvolvimento/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Deficiência Intelectual/genética , Acetiltransferase N-Terminal A/genética , Acetiltransferase N-Terminal E/genética , Fenótipo , Adolescente , Anormalidades Craniofaciais/patologia , Deficiências do Desenvolvimento/patologia , Feminino , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Genótipo , Humanos , Deficiência Intelectual/patologia , Mutação de Sentido Incorreto , Síndrome
19.
Genes (Basel) ; 12(7)2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202629

RESUMO

We report on two siblings suffering from different pathogenic conditions, born to consanguineous parents. A multigene panel for brain malformations and microcephaly identified the homozygous splicing variant NM_005886.3:c.1416+1del in the KATNB1 gene in the older sister. On the other hand, exome sequencing revealed the homozygous frameshift variant NM_005245.4:c.9729del in the FAT1 gene in the younger sister, who had a more complex phenotype: in addition to bilateral anophthalmia and heart defects, she showed a right split foot with 4 toes, 5 metacarpals, second toe duplication and preaxial polydactyly on the right hand. These features have been never reported before in patients with pathogenic FAT1 variants and support the role of this gene in the development of limb buds. Notably, each parent was heterozygous for both of these variants, which were ultra-rare and rare, respectively. This study raises awareness about the value of using whole exome/genome sequencing rather than targeted gene panels when testing affected offspring born to consanguineous couples. In this way, exomic data from the parents are also made available for carrier screening, to identify heterozygous pathogenetic and likely pathogenetic variants in genes responsible for other recessive conditions, which may pose a risk for subsequent pregnancies.


Assuntos
Adenosina Trifosfatases/genética , Caderinas/genética , Lisencefalia/genética , Microcefalia/genética , Polidactilia/genética , Polegar/anormalidades , Encéfalo/anormalidades , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Pré-Escolar , Consanguinidade , Exoma/genética , Feminino , Mutação da Fase de Leitura/genética , Predisposição Genética para Doença , Heterozigoto , Humanos , Lactente , Recém-Nascido , Lisencefalia/diagnóstico por imagem , Lisencefalia/patologia , Microcefalia/diagnóstico por imagem , Microcefalia/patologia , Linhagem , Fenótipo , Polidactilia/diagnóstico por imagem , Polidactilia/patologia , Irmãos , Polegar/diagnóstico por imagem , Polegar/patologia , Sequenciamento do Exoma
20.
Genes (Basel) ; 12(7)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206215

RESUMO

One of the recently described syndromes emerging from the massive study of cohorts of undiagnosed patients with autism spectrum disorders (ASD) and syndromic intellectual disability (ID) is White-Sutton syndrome (WHSUS) (MIM #616364), caused by variants in the POGZ gene (MIM *614787), located on the long arm of chromosome 1 (1q21.3). So far, more than 50 individuals have been reported worldwide, although phenotypic features and natural history have not been exhaustively characterized yet. The phenotypic spectrum of the WHSUS is broad and includes moderate to severe ID, microcephaly, variable cerebral malformations, short stature, brachydactyly, visual abnormalities, sensorineural hearing loss, hypotonia, sleep difficulties, autistic features, self-injurious behaviour, feeding difficulties, gastroesophageal reflux, and other less frequent features. Here, we report the case of a girl with microcephaly, brain malformations, developmental delay (DD), peripheral polyneuropathy, and adducted thumb-a remarkable clinical feature in the first years of life-and heterozygous for a previously unreported, de novo splicing variant in POGZ. This report contributes to strengthen and expand the knowledge of the clinical spectrum of WHSUS, pointing out the importance of less frequent clinical signs as diagnostic handles in suspecting this condition.


Assuntos
Transtorno do Espectro Autista/genética , Deficiência Intelectual/genética , Polineuropatias/genética , Transposases/genética , Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno do Espectro Autista/fisiopatologia , Cromossomos Humanos Par 1/genética , Feminino , Predisposição Genética para Doença , Humanos , Lactente , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/diagnóstico por imagem , Deficiência Intelectual/fisiopatologia , Masculino , Polineuropatias/diagnóstico , Polineuropatias/diagnóstico por imagem , Polineuropatias/fisiopatologia , Sequenciamento do Exoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...