Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Orphanet J Rare Dis ; 18(1): 315, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37817200

RESUMO

BACKGROUND: Limb-girdle muscular dystrophy R1 calpain 3-related (LGMDR1) is an autosomal recessive muscular dystrophy due to mutations in the CAPN3 gene. While the pathophysiology of this disease has not been clearly established yet, Wnt and mTOR signaling pathways impairment in LGMDR1 muscles has been reported. RESULTS: A reduction in Akt phosphorylation ratio and upregulated expression of proteins implicated in glycolysis (HK-II) and in fructose and lactate transport (GLUT5 and MCT1) in LGMDR1 muscle was observed. In vitro analysis to establish mitochondrial and glycolytic functions of primary cultures were performed, however, no differences between control and patients were observed. Additionally, gene expression analysis showed a lack of correlation between primary myoblasts/myotubes and LGMDR1 muscle while skin fibroblasts and CD56- cells showed a slightly better correlation with muscle. FRZB gene was upregulated in all the analyzed cell types (except in myoblasts). CONCLUSIONS: Proteins implicated in metabolism are deregulated in LGMDR1 patients' muscle. Obtained results evidence the limited usefulness of primary myoblasts/myotubes for LGMDR1 gene expression and metabolic studies. However, since FRZB is the only gene that showed upregulation in all the analyzed cell types it is suggested its role as a key regulator of the pathophysiology of the LGMDR1 muscle fiber. The Wnt signaling pathway inactivation, secondary to FRZB upregulation, and GLUT5 overexpression may participate in the impaired adipogenesis in LGMD1R patients.


Assuntos
Proteínas Musculares , Distrofia Muscular do Cíngulo dos Membros , Humanos , Proteínas Musculares/genética , Distrofia Muscular do Cíngulo dos Membros/genética , Distrofia Muscular do Cíngulo dos Membros/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Via de Sinalização Wnt , Técnicas de Cultura de Células , Músculo Esquelético/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-32106710

RESUMO

Objective: To perform a comprehensive lipid profiling to evaluate potential lipid metabolic differences between patients with amyotrophic lateral sclerosis (ALS) and controls, and to provide a more profound understanding of the metabolic abnormalities in ALS. Methods: Twenty patients with ALS and 20 healthy controls were enrolled in a cross-sectional study. Untargeted lipidomics profiling in fasting serum samples were performed by optimized UPLC-MS platforms for broad lipidome coverage. Datasets were analyzed by univariate and a variety of multivariate procedures. Results: We provide the most comprehensive blood lipid profiling of ALS to date, with a total of 416 lipids measured. Univariate analysis showed that 28 individual lipid features and two lipid classes, triacylglycerides and oxidized fatty acids (FAs), were altered in patients with ALS, although none of these changes remained significant after multiple comparison adjustment. Most of these changes remained constant after removing from the analysis individuals treated with lipid-lowering drugs. The non-supervised principal component analysis did not identify any lipid clustering of patients with ALS and controls. Despite this, we performed a variety of linear and non-linear supervised multivariate models to select the most reliable features that discriminate the lipid profile of patients with ALS from controls. These were the monounsaturated FAs C24:1n-9 and C14:1, the triglyceride TG(51:4) and the sphingomyelin SM(36:2). Conclusions: Peripheral alterations of lipid metabolism are poorly defined in ALS, triacylglycerides and certain types of FAs could contribute to the different lipid profile of patients with ALS. These findings should be validated in an independent cohort.


Assuntos
Esclerose Lateral Amiotrófica/sangue , Esclerose Lateral Amiotrófica/diagnóstico , Lipidômica/métodos , Espectrometria de Massas em Tandem/métodos , Idoso , Cromatografia Líquida de Alta Pressão/métodos , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
3.
Front Aging Neurosci ; 10: 380, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30546303

RESUMO

Many factors may converge in healthy aging in the oldest old, but their association and predictive power on healthy or functionally impaired aging has yet to be demonstrated. By detecting healthy aging and in turn, poor aging, we could take action to prevent chronic diseases associated with age. We conducted a pilot study comparing results of a set of markers (peripheral blood mononuclear cell or PBMC telomere length, circulating Aß peptides, anti-Aß antibodies, and ApoE status) previously associated with poor aging or cognitive deterioration, and their combinations, in a cohort of "neurologically healthy" (both motor and cognitive) nonagenarians (n = 20) and functionally impaired, institutionalized nonagenarians (n = 38) recruited between 2014 and 2015. We recruited 58 nonagenarians (41 women, 70.7%; mean age: 92.37 years in the neurologically healthy group vs. 94.13 years in the functionally impaired group). Healthy nonagenarians had significantly higher mean PBMC telomere lengths (mean = 7, p = 0.001), this being inversely correlated with functional impairment, and lower circulating Aß40 (total in plasma fraction or TP and free in plasma fraction or FP), Aß42 (TP and FP) and Aß17 (FP) levels (FP40 131.35, p = 0.004; TP40 299.10, p = 0.007; FP42 6.29, p = 0.009; TP42 22.53, p = 0.019; FP17 1.32 p = 0.001; TP17 4.47, p = 0.3), after adjusting by age. Although healthy nonagenarians had higher anti-Aß40 antibody levels (net adsorbed signal or NAS ± SD: 0.211 ± 0.107), the number of participants that pass the threshold (NAS > 3) to be considered as positive did not show such a strong association. There was no association with ApoE status. Additionally, we propose a "Composite Neurologically Healthy Aging Score" combining TP40 and mean PBMC telomere length, the strongest correlation of measured biomarkers with neurologically healthy status in nonagenarians (AUC = 0.904).

5.
Prog Neurobiol ; 142: 104-129, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27236050

RESUMO

The scientific scenario of amyotrophic lateral sclerosis (ALS) has dramatically changed since TDP-43 aggregates were discovered in 2006 as the main component of the neuronal inclusions seen in the disease, and more recently, when the implication of C9ORF72 expansion in familial and sporadic cases of ALS and frontotemporal dementia was confirmed. These discoveries have enlarged an extense list of genes implicated in different cellular processes such as RNA processing or autophagia among others and have broaden the putative molecular targets of the disease. Some of ALS-related genes such as TARDBP or SOD1 among others have important roles in the regulation of glucose and fatty acids metabolism, so that an impairment of fatty acids (FA) consumption and ketogenic deficits during exercise in ALS patients would connect the physiopathology with some of the more intriguing epidemiological traits of the disease. The current understanding of ALS as part of a continuum with other neurodegenerative diseases and a crossroads between genetic, neurometabolic and environmental factors represent a fascinating model of interaction that could be translated to other neurodegenerative diseases. In this review we summarize the most relevant data obtained in the ten last years and the key lines for future research in ALS.


Assuntos
Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Interação Gene-Ambiente , Esclerose Lateral Amiotrófica/etiologia , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...