Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(16)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36015801

RESUMO

The Industrial Revolution 4.0 (IR 4.0) has drastically impacted how the world operates. The Internet of Things (IoT), encompassed significantly by the Wireless Sensor Networks (WSNs), is an important subsection component of the IR 4.0. WSNs are a good demonstration of an ambient intelligence vision, in which the environment becomes intelligent and aware of its surroundings. WSN has unique features which create its own distinct network attributes and is deployed widely for critical real-time applications that require stringent prerequisites when dealing with faults to ensure the avoidance and tolerance management of catastrophic outcomes. Thus, the respective underlying Fault Tolerance (FT) structure is a critical requirement that needs to be considered when designing any algorithm in WSNs. Moreover, with the exponential evolution of IoT systems, substantial enhancements of current FT mechanisms will ensure that the system constantly provides high network reliability and integrity. Fault tolerance structures contain three fundamental stages: error detection, error diagnosis, and error recovery. The emergence of analytics and the depth of harnessing it has led to the development of new fault-tolerant structures and strategies based on artificial intelligence and cloud-based. This survey provides an elaborate classification and analysis of fault tolerance structures and their essential components and categorizes errors from several perspectives. Subsequently, an extensive analysis of existing fault tolerance techniques based on eight constraints is presented. Many prior studies have provided classifications for fault tolerance systems. However, this research has enhanced these reviews by proposing an extensively enhanced categorization that depends on the new and additional metrics which include the number of sensor nodes engaged, the overall fault-tolerant approach performance, and the placement of the principal algorithm responsible for eliminating network errors. A new taxonomy of comparison that also extensively reviews previous surveys and state-of-the-art scientific articles based on different factors is discussed and provides the basis for the proposed open issues.

2.
PLoS One ; 14(3): e0212490, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30845160

RESUMO

Recently, the mobility management of urban vehicular networks has become great challenges for researchers due to its unique mobility requirements imposed by mobile users when accessing different services in a random fashion. To provide a ubiquitous Internet and seamless connectivity, the Internet Engineering Task Force (IETF) has proposed a Proxy Mobile IPv6 (PMIPv6) protocol. This is meant to address the signaling of the mobility transparent to the Mobile Node (MN) and also guarantee session continuity while the MN is in motion. However, performing a handoff by tens of thousands of MNs may harm the performance of the system significantly due to the high signaling overhead and the insufficient utilization of so-called Binding Cash Entry (BCE) at the Local Mobility Anchor (LMA). To address these issues, we propose an efficient scheme within the PMIPv6 protocol, named AE-PMIPv6 scheme, to effectively utilize the BCE at the LMA. This is primarily achieved by merging the BCEs of the MNs, thus, reducing the signaling overhead. Better utilization of the BCEs has been attained by employing virtual addresses and addressing pool mechanisms for the purpose of binding information of the MNs that are moving together towards the same network at a specific time, during their handoff process. Results obtained from our simulation demonstrates the superiority of AE-PMIPv6 scheme over E-PMIPv6 scheme. The AE-PMIPv6 succeeds in minimizing the signaling overhead, reduces the handover time and at the same time efficiently utilize the buffer resources.


Assuntos
Algoritmos , Internet , Veículos Automotores , Reforma Urbana , Tecnologia sem Fio , Humanos
3.
Sensors (Basel) ; 17(7)2017 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-28708067

RESUMO

Transferring a huge amount of data between different network locations over the network links depends on the network's traffic capacity and data rate. Traditionally, a mobile device may be moved to achieve the operations of vertical handover, considering only one criterion, that is the Received Signal Strength (RSS). The use of a single criterion may cause service interruption, an unbalanced network load and an inefficient vertical handover. In this paper, we propose an enhanced vertical handover decision algorithm based on multiple criteria in the heterogeneous wireless network. The algorithm consists of three technology interfaces: Long-Term Evolution (LTE), Worldwide interoperability for Microwave Access (WiMAX) and Wireless Local Area Network (WLAN). It also employs three types of vertical handover decision algorithms: equal priority, mobile priority and network priority. The simulation results illustrate that the three types of decision algorithms outperform the traditional network decision algorithm in terms of handover number probability and the handover failure probability. In addition, it is noticed that the network priority handover decision algorithm produces better results compared to the equal priority and the mobile priority handover decision algorithm. Finally, the simulation results are validated by the analytical model.

4.
PLoS One ; 12(1): e0170273, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28121992

RESUMO

Due to the lack of dependency for routing initiation and an inadequate allocated sextant on responding messages, the secure geographic routing protocols for Wireless Sensor Networks (WSNs) have attracted considerable attention. However, the existing protocols are more likely to drop packets when legitimate nodes fail to respond to the routing initiation messages while attackers in the allocated sextant manage to respond. Furthermore, these protocols are designed with inefficient collection window and inadequate verification criteria which may lead to a high number of attacker selections. To prevent the failure to find an appropriate relay node and undesirable packet retransmission, this paper presents Secure Region-Based Geographic Routing Protocol (SRBGR) to increase the probability of selecting the appropriate relay node. By extending the allocated sextant and applying different message contention priorities more legitimate nodes can be admitted in the routing process. Moreover, the paper also proposed the bound collection window for a sufficient collection time and verification cost for both attacker identification and isolation. Extensive simulation experiments have been performed to evaluate the performance of the proposed protocol in comparison with other existing protocols. The results demonstrate that SRBGR increases network performance in terms of the packet delivery ratio and isolates attacks such as Sybil and Black hole.


Assuntos
Algoritmos , Redes de Comunicação de Computadores , Segurança Computacional , Tecnologia sem Fio , Agressão , Redes de Comunicação de Computadores/economia , Redes de Comunicação de Computadores/organização & administração , Segurança Computacional/economia , Simulação por Computador , Sistemas de Informação Geográfica/economia , Software , Tecnologia sem Fio/economia , Tecnologia sem Fio/organização & administração
5.
PLoS One ; 12(1): e0167423, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28056020

RESUMO

Recently, Pulse Coupled Oscillator (PCO)-based travelling waves have attracted substantial attention by researchers in wireless sensor network (WSN) synchronization. Because WSNs are generally artificial occurrences that mimic natural phenomena, the PCO utilizes firefly synchronization of attracting mating partners for modelling the WSN. However, given that sensor nodes are unable to receive messages while transmitting data packets (due to deafness), the PCO model may not be efficient for sensor network modelling. To overcome this limitation, this paper proposed a new scheme called the Travelling Wave Pulse Coupled Oscillator (TWPCO). For this, the study used a self-organizing scheme for energy-efficient WSNs that adopted travelling wave biologically inspired network systems based on phase locking of the PCO model to counteract deafness. From the simulation, it was found that the proposed TWPCO scheme attained a steady state after a number of cycles. It also showed superior performance compared to other mechanisms, with a reduction in the total energy consumption of 25%. The results showed that the performance improved by 13% in terms of data gathering. Based on the results, the proposed scheme avoids the deafness that occurs in the transmit state in WSNs and increases the data collection throughout the transmission states in WSNs.


Assuntos
Redes de Comunicação de Computadores , Tecnologia sem Fio/instrumentação , Algoritmos , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA