Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosensors (Basel) ; 13(1)2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36671901

RESUMO

The development of microbial fuel cells based on electro-catalytic processes is among the novel topics, which are recently emerging in the sustainable development of energetic systems. Microbial fuel cells have emerged as unique biocatalytic systems, which transform the chemical energy accumulated in renewable organic fuels and at the same time reduce pollution from hazardous organic compounds. However, not all microorganisms involved in metabolic/catalytic processes generate sufficient redox potential. In this research, we have assessed the applicability of the microorganism Rhizobium anhuiense as a catalyst suitable for the design of microbial fuel cells. To improve the charge transfer, several redox mediators were tested, namely menadione, riboflavin, and 9,10-phenanthrenequinone (PQ). The best performance was determined for a Rhizobium anhuiense-based bio-anode mediated by menadione with a 0.385 mV open circuit potential and 5.5 µW/cm2 maximal power density at 0.35 mV, which generated 50 µA/cm2 anode current at the same potential.


Assuntos
Fontes de Energia Bioelétrica , Rhizobium , Fontes de Energia Bioelétrica/microbiologia , Vitamina K 3 , Bactérias , Eletrodos
2.
Int J Mol Sci ; 24(1)2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36614164

RESUMO

In this article, we report the development of an electrochemical biosensor for the determination of the SARS-CoV-2 spike protein (rS). A gold disc electrode was electrochemically modified to form the nanocrystalline gold structure on the surface. Then, it was further altered by a self-assembling monolayer based on a mixture of two alkane thiols: 11-mercaptoundecanoic acid (11-MUA) and 6-mercapto-1-hexanol (6-MCOH) (SAMmix). After activating carboxyl groups using a N-(3-dimethylaminopropyl)-N'-ethyl-carbodiimide hydrochloride and N-hydroxysuccinimide mixture, the rS protein was covalently immobilized on the top of the SAMmix. This electrode was used to design an electrochemical sensor suitable for determining antibodies against the SARS-CoV-2 rS protein (anti-rS). We assessed the association between the immobilized rS protein and the anti-rS antibody present in the blood serum of a SARS-CoV-2 infected person using three electrochemical methods: cyclic voltammetry, differential pulse voltammetry, and potential pulsed amperometry. The results demonstrated that differential pulse voltammetry and potential pulsed amperometry measurements displayed similar sensitivity. In contrast, the measurements performed by cyclic voltammetry suggest that this method is the most sensitive out of the three methods applied in this research.


Assuntos
Técnicas Biossensoriais , COVID-19 , Humanos , Glicoproteína da Espícula de Coronavírus , SARS-CoV-2 , Anticorpos , Eletrodos , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Ouro/química
3.
Bioorg Med Chem ; 27(2): 322-337, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30553625

RESUMO

Two series of benzenesulfonamides bearing methyl groups at ortho/ortho or meta/ortho positions and a pyrrolidinone moiety at para position were synthesized and tested as inhibitors of the twelve catalytically active human carbonic anhydrase (CA) isoforms. Observed binding affinities were determined by fluorescent thermal shift assay and intrinsic binding affinities representing the binding of benzenesulfonamide anion to the Zn(II)-bound water form of CA were calculated. Introduction of dimethyl groups into benzenesulfonamide ring decreased the binding affinity to almost all CA isoforms, but gained in selectivity towards one CA isoform. A chloro group at the meta position of 2,6-dimethylbenzenesulfonamide derivatives did not influence the binding to CA I, but it increased the affinity to all other CAs, especially, CA VII and CA XIII (up to 500 fold). The compounds may be used for further development of CA inhibitors with higher selectivity to particular CA isoforms.


Assuntos
Inibidores da Anidrase Carbônica/química , Pirrolidinonas/química , Sulfonamidas/química , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/metabolismo , Anidrases Carbônicas/química , Anidrases Carbônicas/metabolismo , Domínio Catalítico , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/química , Isoenzimas/metabolismo , Estrutura Molecular , Ligação Proteica , Pirrolidinonas/síntese química , Pirrolidinonas/metabolismo , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/metabolismo
4.
Biosens Bioelectron ; 102: 449-455, 2018 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-29182927

RESUMO

This manuscript describes a bioelectrochemical application of a new class of electrochemically generated hole-transporting (p-type) polymeric semiconductors (HTPS), which are based on a carbazole core and the oxiran and thiiran reactive groups. Electrode based on transparent layer of indium tin oxide was electrochemically modified with a layer of HTPS and a monolayer of covalently immobilized glucose oxidase (GOx). The HTPS/GOx-based electrode was investigated for an evaluation of direct hole-transfer between the enzyme and electrode at a bio-electrochemically relevant potential via HTPS layer. The broad linear relationship between the peak-current density and glucose concentration from 2 to 15mM and high stability of ITO/poly-CzS/GOx-electrode was observed. Moreover, it was determined that charge transfer rate constants are reliable for the establishment of advanced electron transfer between enzyme and electrode for the application of this HTPS/GOx-based electrode in long-lived biofuel cells and amperometric biosensors.


Assuntos
Técnicas Biossensoriais , Enzimas Imobilizadas/química , Glucose Oxidase/química , Glucose/isolamento & purificação , Carbazóis/química , Eletroquímica , Compostos de Epóxi/química , Glucose/química , Humanos , Nanotubos de Carbono/química , Polímeros/química , Semicondutores , Compostos de Estanho/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...