Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Int J Dev Biol ; 57(6-8): 639-50, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24166446

RESUMO

Researchers and biotechnologists require methods to accurately modify the genome of higher eukaryotic cells. Such modifications include, but are not limited to, site-specific mutagenesis, site-specific insertion of foreign DNA, and replacement and deletion of native sequences. Accurate genome modifications in plant species have been rather limited, with only a handful of plant species and genes being modified through the use of early genome-editing techniques. The development of rare-cutting restriction enzymes as a tool for the induction of site-specific genomic double-strand breaks and their introduction as a reliable tool for genome modification in animals, animal cells and human cell lines have paved the way for the adaptation of rare-cutting restriction enzymes to genome editing in plant cells. Indeed, the number of plant species and genes which have been successfully edited using zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and engineered homing endonucleases is on the rise. In our review, we discuss the basics of rare-cutting restriction enzyme-mediated genome-editing technology with an emphasis on its application in plant species.


Assuntos
Agrobacterium/genética , Enzimas de Restrição do DNA/metabolismo , Genoma de Planta , Sequência de Aminoácidos , Animais , Biotecnologia/métodos , Produtos Agrícolas/genética , Reparo do DNA , DNA Bacteriano/genética , Regulação da Expressão Gênica , Genes de Plantas , Vetores Genéticos , Genoma , Genômica , Humanos , Modelos Genéticos , Dados de Sequência Molecular , Plantas/genética , RNA/metabolismo , Recombinação Genética , Ativação Transcricional , Dedos de Zinco/genética
3.
Plant Biotechnol J ; 10(4): 373-89, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22469004

RESUMO

Genome editing, i.e. the ability to mutagenize, insert, delete and replace sequences, in living cells is a powerful and highly desirable method that could potentially revolutionize plant basic research and applied biotechnology. Indeed, various research groups from academia and industry are in a race to devise methods and develop tools that will enable not only site-specific mutagenesis but also controlled foreign DNA integration and replacement of native and transgene sequences by foreign DNA, in living plant cells. In recent years, much of the progress seen in gene targeting in plant cells has been attributed to the development of zinc finger nucleases and other novel restriction enzymes for use as molecular DNA scissors. The induction of double-strand breaks at specific genomic locations by zinc finger nucleases and other novel restriction enzymes results in a wide variety of genetic changes, which range from gene addition to the replacement, deletion and site-specific mutagenesis of endogenous and heterologous genes in living plant cells. In this review, we discuss the principles and tools for restriction enzyme-mediated gene targeting in plant cells, as well as their current and prospective use for gene targeting in model and crop plants.


Assuntos
Enzimas de Restrição do DNA/metabolismo , Genoma de Planta/genética , Genômica/métodos , Células Vegetais/metabolismo , Marcação de Genes , Recombinação Homóloga/genética
4.
Trends Biotechnol ; 29(8): 363-9, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21536337

RESUMO

Endonuclease-mediated induction of genomic double-strand breaks has enabled genome editing in living cells. However, deploying this technology for the induction of gene disruption in plant cells often relies on direct gene transfer of endonuclease (i.e. zinc finger nuclease or homing endonuclease) expression constructs into the targeted cell, followed by regeneration of a mutated plant. Such mutants, even when they have no detectable traces of foreign DNA, might still be classified as transgenic because of the transgenic nature of the endonuclease delivery method. Indirect delivery of endonucleases into target cells by viral vectors provides a unique non-transgenic approach to the production of mutated plants. Furthermore, viral vectors can spread into the growing and developing tissues of infected plants, which could provide a unique opportunity to bypass the regeneration step that is often required in direct gene-transfer methods.


Assuntos
Técnicas de Transferência de Genes , Engenharia Genética/métodos , Vetores Genéticos/genética , Plantas Geneticamente Modificadas/genética , Vírus/genética , Animais , Endonucleases/genética , Endonucleases/metabolismo , Humanos
5.
Plant Physiol ; 154(3): 1079-87, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20876340

RESUMO

Zinc finger nucleases (ZFNs) are a powerful tool for genome editing in eukaryotic cells. ZFNs have been used for targeted mutagenesis in model and crop species. In animal and human cells, transient ZFN expression is often achieved by direct gene transfer into the target cells. Stable transformation, however, is the preferred method for gene expression in plant species, and ZFN-expressing transgenic plants have been used for recovery of mutants that are likely to be classified as transgenic due to the use of direct gene-transfer methods into the target cells. Here we present an alternative, nontransgenic approach for ZFN delivery and production of mutant plants using a novel Tobacco rattle virus (TRV)-based expression system for indirect transient delivery of ZFNs into a variety of tissues and cells of intact plants. TRV systemically infected its hosts and virus ZFN-mediated targeted mutagenesis could be clearly observed in newly developed infected tissues as measured by activation of a mutated reporter transgene in tobacco (Nicotiana tabacum) and petunia (Petunia hybrida) plants. The ability of TRV to move to developing buds and regenerating tissues enabled recovery of mutated tobacco and petunia plants. Sequence analysis and transmission of the mutations to the next generation confirmed the stability of the ZFN-induced genetic changes. Because TRV is an RNA virus that can infect a wide range of plant species, it provides a viable alternative to the production of ZFN-mediated mutants while avoiding the use of direct plant-transformation methods.


Assuntos
Endonucleases/genética , Técnicas de Transferência de Genes , Genoma de Planta , Mutagênese Sítio-Dirigida/métodos , Vírus de Plantas/genética , Sequência de Bases , Marcação de Genes , Genes Reporter , Vetores Genéticos , Dados de Sequência Molecular , Mutação , Petunia/genética , Plantas Geneticamente Modificadas/genética , Nicotiana/genética , Transgenes , Dedos de Zinco/genética
6.
Planta ; 225(1): 89-102, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16845531

RESUMO

Studies on the carotenoid-overaccumulating structures in chromoplasts have led to the characterization of proteins termed plastid lipid-associated proteins (PAPs), involved in the sequestration of hydrophobic compounds. Here we characterize the PAP CHRD, which, based on sequence homology, belongs to a highly conserved group of proteins, YER057c/YjgF/UK114, involved in the regulation of basic and vital cellular processes in bacteria, yeast and animals. Two nuclear genes were characterized in tomato plants: one (LeChrDc) is constitutively expressed in various tissues and the other (LeChrDi) is induced by stress in leaves and is upregulated by developmental cues in floral tissues. Using RNAi and antisense approaches, we show their involvement in biologically significant processes such as photosynthesis. The quantum yield of photosynthetic electron flow in transgenic tomato leaves with suppressed LeChrDi/c expression was 30-50% of their control, non-transgenic counterparts and was ascribed to lower PSI activity. Transgenic flowers with suppressed LeChrDi/c also accumulated up to 30% less carotenoids per unit protein as compared to control plants, indicating an interrelationship between PAPs and floral-specific carotenoid accumulation in chromoplasts. We suggest that CHRD's role in the angiosperm reproductive unit may be a rather recent evolutionary development; its original function may have been to protect the plant under stress conditions by preserving plastid functionality.


Assuntos
Fotossíntese/fisiologia , Proteínas de Plantas/metabolismo , Plastídeos/metabolismo , Sequência de Aminoácidos , Carotenoides/metabolismo , Cloroplastos/metabolismo , Cucumis sativus/genética , Cucumis sativus/metabolismo , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Cinética , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Dados de Sequência Molecular , Oxirredução , Fotossíntese/genética , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Plastídeos/genética , Interferência de RNA , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência de Aminoácidos , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...