Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Biol ; 21(5): e3002091, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37192172

RESUMO

The streptothricin natural product mixture (also known as nourseothricin) was discovered in the early 1940s, generating intense initial interest because of excellent gram-negative activity. Here, we establish the activity spectrum of nourseothricin and its main components, streptothricin F (S-F, 1 lysine) and streptothricin D (S-D, 3 lysines), purified to homogeneity, against highly drug-resistant, carbapenem-resistant Enterobacterales (CRE) and Acinetobacter baumannii. For CRE, the MIC50 and MIC90 for S-F and S-D were 2 and 4 µM, and 0.25 and 0.5 µM, respectively. S-F and nourseothricin showed rapid, bactericidal activity. S-F and S-D both showed approximately 40-fold greater selectivity for prokaryotic than eukaryotic ribosomes in in vitro translation assays. In vivo, delayed renal toxicity occurred at >10-fold higher doses of S-F compared with S-D. Substantial treatment effect of S-F in the murine thigh model was observed against the otherwise pandrug-resistant, NDM-1-expressing Klebsiella pneumoniae Nevada strain with minimal or no toxicity. Cryo-EM characterization of S-F bound to the A. baumannii 70S ribosome defines extensive hydrogen bonding of the S-F steptolidine moiety, as a guanine mimetic, to the 16S rRNA C1054 nucleobase (Escherichia coli numbering) in helix 34, and the carbamoylated gulosamine moiety of S-F with A1196, explaining the high-level resistance conferred by corresponding mutations at the residues identified in single rrn operon E. coli. Structural analysis suggests that S-F probes the A-decoding site, which potentially may account for its miscoding activity. Based on unique and promising activity, we suggest that the streptothricin scaffold deserves further preclinical exploration as a potential therapeutic for drug-resistant, gram-negative pathogens.


Assuntos
Antibacterianos , Estreptotricinas , Animais , Camundongos , Antibacterianos/farmacologia , Estreptotricinas/química , Estreptotricinas/farmacologia , Escherichia coli/genética , RNA Ribossômico 16S/genética , Bactérias Gram-Negativas , Carbapenêmicos/farmacologia , Ribossomos , Testes de Sensibilidade Microbiana
2.
mSphere ; 8(2): e0067322, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-36853056

RESUMO

Pathogen inactivation is a strategy to improve the safety of transfusion products. The only pathogen reduction technology for blood products currently approved in the US utilizes a psoralen compound, called amotosalen, in combination with UVA light to inactivate bacteria, viruses, and protozoa. Psoralens have structural similarity to bacterial multidrug efflux pump substrates. As these efflux pumps are often overexpressed in multidrug-resistant pathogens, we tested whether contemporary drug-resistant pathogens might show resistance to amotosalen and other psoralens based on multidrug efflux mechanisms through genetic, biophysical, and molecular modeling analysis. The main efflux systems in Enterobacterales, Acinetobacter baumannii, and Pseudomonas aeruginosa are tripartite resistance-nodulation-cell division (RND) systems, which span the inner and outer membranes of Gram-negative pathogens, and expel antibiotics from the bacterial cytoplasm into the extracellular space. We provide evidence that amotosalen is an efflux substrate for the E. coli AcrAB, Acinetobacter baumannii AdeABC, and P. aeruginosa MexXY RND efflux pumps. Furthermore, we show that the MICs for contemporary Gram-negative bacterial isolates for these species and others in vitro approached and exceeded the concentration of amotosalen used in the approved platelet and plasma inactivation procedures. These findings suggest that otherwise safe and effective inactivation methods should be further studied to identify possible gaps in their ability to inactivate contemporary, multidrug-resistant bacterial pathogens. IMPORTANCE Pathogen inactivation is a strategy to enhance the safety of transfused blood products. We identify the compound, amotosalen, widely used for pathogen inactivation, as a bacterial multidrug efflux substrate. Specifically, experiments suggest that amotosalen is pumped out of bacteria by major efflux pumps in E. coli, Acinetobacter baumannii, and Pseudomonas aeruginosa. Such efflux pumps are often overexpressed in multidrug-resistant pathogens. Importantly, the MICs for contemporary multidrug-resistant Enterobacterales, Acinetobacter baumannii, Pseudomonas aeruginosa, Burkholderia spp., and Stenotrophomonas maltophilia isolates approached or exceeded the amotosalen concentration used in approved platelet and plasma inactivation procedures, potentially as a result of efflux pump activity. Although there are important differences in methodology between our experiments and blood product pathogen inactivation, these findings suggest that otherwise safe and effective inactivation methods should be further studied to identify possible gaps in their ability to inactivate contemporary, multidrug-resistant bacterial pathogens.


Assuntos
Furocumarinas , Proteínas de Membrana Transportadoras , Proteínas de Membrana Transportadoras/genética , Proteínas de Bactérias/genética , Escherichia coli/metabolismo , Furocumarinas/farmacologia , Bactérias Gram-Negativas , Transfusão de Sangue , Divisão Celular
3.
Proc Natl Acad Sci U S A ; 117(47): 29839-29850, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33168749

RESUMO

Carbapenem-resistant Enterobacteriaceae (CRE) are multidrug-resistant pathogens for which new treatments are desperately needed. Carbapenemases and other types of antibiotic resistance genes are carried almost exclusively on large, low-copy-number plasmids (pCRE). Accordingly, small molecules that efficiently evict pCRE plasmids should restore much-needed treatment options. We therefore designed a high-throughput screen to identify such compounds. A synthetic plasmid was constructed containing the plasmid replication machinery from a representative Escherichia coli CRE isolate as well as a fluorescent reporter gene to easily monitor plasmid maintenance. The synthetic plasmid was then introduced into an E. coli K12 tolC host. We used this screening strain to test a library of over 12,000 known bioactive agents for molecules that selectively reduce plasmid levels relative to effects on bacterial growth. From 366 screen hits we further validated the antiplasmid activity of kasugamycin, an aminoglycoside; CGS 15943, a nucleoside analog; and Ro 90-7501, a bibenzimidazole. All three compounds exhibited significant antiplasmid activity including up to complete suppression of plasmid replication and/or plasmid eviction in multiple orthogonal readouts and potentiated activity of the carbapenem, meropenem, against a strain carrying the large, pCRE plasmid from which we constructed the synthetic screening plasmid. Additionally, we found kasugamycin and CGS 15943 blocked plasmid replication, respectively, by inhibiting expression or function of the plasmid replication initiation protein, RepE. In summary, we validated our approach to identify compounds that alter plasmid maintenance, confer resensitization to antimicrobials, and have specific mechanisms of action.


Assuntos
Antibacterianos/farmacologia , Enterobacteriáceas Resistentes a Carbapenêmicos/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Infecções por Enterobacteriaceae/tratamento farmacológico , Ensaios de Triagem em Larga Escala/métodos , Aminas/farmacologia , Aminas/uso terapêutico , Aminoglicosídeos/farmacologia , Aminoglicosídeos/uso terapêutico , Antibacterianos/uso terapêutico , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Benzimidazóis/farmacologia , Benzimidazóis/uso terapêutico , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Farmacorresistência Bacteriana Múltipla/genética , Sinergismo Farmacológico , Quimioterapia Combinada , Infecções por Enterobacteriaceae/microbiologia , Escherichia coli/genética , Meropeném/farmacologia , Meropeném/uso terapêutico , Testes de Sensibilidade Microbiana , Mutagênese Sítio-Dirigida , Plasmídeos/genética , Quinazolinas/farmacologia , Quinazolinas/uso terapêutico , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Triazóis/farmacologia , Triazóis/uso terapêutico , beta-Lactamases/genética
4.
medRxiv ; 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32511491

RESUMO

The SARS-CoV-2 pandemic has caused a severe international shortage of the nasopharyngeal swabs that are required for collection of optimal specimens, creating a critical bottleneck in the way of high-sensitivity virological testing for COVID-19. To address this crisis, we designed and executed an innovative, radically cooperative, rapid-response translational-research program that brought together healthcare workers, manufacturers, and scientists to emergently develop and clinically validate new swabs for immediate mass production by 3D printing. We performed a rigorous multi-step preclinical evaluation on 160 swab designs and 48 materials from 24 companies, laboratories, and individuals, and shared results and other feedback via a public data repository (http://github.com/rarnaout/Covidswab/). We validated four prototypes through an institutional review board (IRB)-approved clinical trial that involved 276 outpatient volunteers who presented to our hospital's drive-through testing center with symptoms suspicious for COVID-19. Each participant was swabbed with a reference swab (the control) and a prototype, and SARS-CoV-2 reverse-transcriptase polymerase chain reaction (RT-PCR) results were compared. All prototypes displayed excellent concordance with the control (κ=0.85-0.89). Cycle-threshold (Ct) values were not significantly different between each prototype and the control, supporting the new swabs' non-inferiority (Mann-Whitney U [MWU] p>0.05). Study staff preferred one of the prototypes over the others and the control swab overall. The total time elapsed between identification of the problem and validation of the first prototype was 22 days. Contact information for ordering can be found at http://printedswabs.org. Our experience holds lessons for the rapid development, validation, and deployment of new technology for this pandemic and beyond.

5.
medRxiv ; 2020 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-32511577

RESUMO

The SARS-CoV-2 pandemic has caused a severe, international shortage of N95 respirators, which are essential to protect healthcare providers from infection. Given the contemporary limitations of the supply chain, it is imperative to identify effective means of decontaminating, reusing, and thereby conserving N95 respirator stockpiles. To be effective, decontamination must result in sterilization of the N95 respirator without impairment of respirator filtration or user fit. Although numerous methods of N95 decontamination exist, none are universally accessible. In this work we describe a microwave-generated steam decontamination protocol for N95 respirators for use in healthcare systems of all sizes, geographies, and means. Using widely available glass containers, mesh from commercial produce bags, a rubber band, and a 1100W commercially available microwave, we constructed an effective, standardized, and reproducible means of decontaminating N95 respirators. Employing this methodology against MS2 phage, a highly conservative surrogate for SARS-CoV-2 contamination, we report an average 6-log 10 plaque forming unit (PFU) (99.9999%) and a minimum 5-log 10 PFU (99.999%) reduction after a single three-minute microwave treatment. Notably, quantified respirator fit and function were preserved, even after 20 sequential cycles of microwave steam decontamination. This method provides a valuable means of effective decontamination and reuse of N95 respirators by frontline providers facing urgent need.

6.
mBio ; 11(3)2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32587063

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has caused a severe, international shortage of N95 respirators, which are essential to protect health care providers from infection. Given the contemporary limitations of the supply chain, it is imperative to identify effective means of decontaminating, reusing, and thereby conserving N95 respirator stockpiles. To be effective, decontamination must result in sterilization of the N95 respirator without impairment of respirator filtration or user fit. Although numerous methods of N95 decontamination exist, none are universally accessible. In this work, we describe a microwave-generated steam decontamination protocol for N95 respirators for use in health care systems of all sizes, geographies, and means. Using widely available glass containers, mesh from commercial produce bags, a rubber band, and a 1,100-W commercially available microwave, we constructed an effective, standardized, and reproducible means of decontaminating N95 respirators. Employing this methodology against MS2 phage, a highly conservative surrogate for SARS-CoV-2 contamination, we report an average 6-log10 plaque-forming unit (PFU) (99.9999%) and a minimum 5-log10 PFU (99.999%) reduction after a single 3-min microwave treatment. Notably, quantified respirator fit and function were preserved, even after 20 sequential cycles of microwave steam decontamination. This method provides a valuable means of effective decontamination and reuse of N95 respirators by frontline providers facing urgent need.IMPORTANCE Due to the rapid spread of coronavirus disease 2019 (COVID-19), there is an increasing shortage of protective gear necessary to keep health care providers safe from infection. As of 9 April 2020, the CDC reported 9,282 cumulative cases of COVID-19 among U.S. health care workers (CDC COVID-19 Response Team, MMWR Morb Mortal Wkly Rep 69:477-481, 2020, https://doi.org/10.15585/mmwr.mm6915e6). N95 respirators are recommended by the CDC as the ideal method of protection from COVID-19. Although N95 respirators are traditionally single use, the shortages have necessitated the need for reuse. Effective methods of N95 decontamination that do not affect the fit or filtration ability of N95 respirators are essential. Numerous methods of N95 decontamination exist; however, none are universally accessible. In this study, we describe an effective, standardized, and reproducible means of decontaminating N95 respirators using widely available materials. The N95 decontamination method described in this work will provide a valuable resource for hospitals, health care centers, and outpatient practices that are experiencing increasing shortages of N95 respirators due to the COVID-19 pandemic.


Assuntos
Betacoronavirus/efeitos da radiação , Infecções por Coronavirus/prevenção & controle , Descontaminação/instrumentação , Descontaminação/métodos , Máscaras , Vapor , Betacoronavirus/fisiologia , COVID-19 , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/virologia , Descontaminação/normas , Transmissão de Doença Infecciosa/prevenção & controle , Desinfecção/instrumentação , Desinfecção/métodos , Reutilização de Equipamento/normas , Filtração , Humanos , Micro-Ondas , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Pneumonia Viral/transmissão , Reprodutibilidade dos Testes , SARS-CoV-2 , Esterilização , Estados Unidos
7.
J Clin Microbiol ; 58(8)2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32393482

RESUMO

The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a severe international shortage of the nasopharyngeal swabs that are required for collection of optimal specimens, creating a critical bottleneck blocking clinical laboratories' ability to perform high-sensitivity virological testing for SARS-CoV-2. To address this crisis, we designed and executed an innovative, cooperative, rapid-response translational-research program that brought together health care workers, manufacturers, and scientists to emergently develop and clinically validate new swabs for immediate mass production by 3D printing. We performed a multistep preclinical evaluation of 160 swab designs and 48 materials from 24 companies, laboratories, and individuals, and we shared results and other feedback via a public data repository (http://github.com/rarnaout/Covidswab/). We validated four prototypes through an institutional review board (IRB)-approved clinical trial that involved 276 outpatient volunteers who presented to our hospital's drive-through testing center with symptoms suspicious for COVID-19. Each participant was swabbed with a reference swab (the control) and a prototype, and SARS-CoV-2 reverse transcriptase PCR (RT-PCR) results were compared. All prototypes displayed excellent concordance with the control (κ = 0.85 to 0.89). Cycle threshold (CT ) values were not significantly different between each prototype and the control, supporting the new swabs' noninferiority (Mann-Whitney U [MWU] test, P > 0.05). Study staff preferred one of the prototypes over the others and preferred the control swab overall. The total time elapsed between identification of the problem and validation of the first prototype was 22 days. Contact information for ordering can be found at http://printedswabs.org Our experience holds lessons for the rapid development, validation, and deployment of new technology for this pandemic and beyond.


Assuntos
Betacoronavirus/isolamento & purificação , Técnicas de Laboratório Clínico/instrumentação , Infecções por Coronavirus/diagnóstico , Desenho de Equipamento/métodos , Nasofaringe/virologia , Pneumonia Viral/diagnóstico , Impressão Tridimensional , Manejo de Espécimes/instrumentação , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19 , Teste para COVID-19 , Técnicas de Laboratório Clínico/métodos , Infecções por Coronavirus/virologia , Feminino , Hospitais , Humanos , Masculino , Pessoa de Meia-Idade , Pandemias , Pneumonia Viral/virologia , SARS-CoV-2 , Manejo de Espécimes/métodos , Pesquisa Translacional Biomédica/organização & administração , Adulto Jovem
8.
PLoS One ; 13(9): e0204495, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30261007

RESUMO

New therapeutic strategies are needed to treat drug resistant tuberculosis (TB) and to improve treatment for drug sensitive TB. Pyrazinamide (PZA) is a critical component of current first-line TB therapy. However, the rise in PZA-resistant TB cases jeopardizes the future utility of PZA. To address this problem, we used the guinea pig model of TB and tested the efficacy of an inhaled dry powder combination, referred to as Pyrazinoic acid/ester Dry Powder (PDP), which is comprised of pyrazinoic acid (POA), the active moiety of PZA, and pyrazinoic acid ester (PAE), which is a PZA analog. Both POA and PAE have the advantage of being able to act on PZA-resistant Mycobacterium tuberculosis. When used in combination with oral rifampicin (R), inhaled PDP had striking effects on tissue pathology. Effects were observed in lungs, the site of delivery, but also in the spleen and liver indicating both local and systemic effects of inhaled PDP. Tissue granulomas that harbor M. tuberculosis in a persistent state are a hallmark of TB and they pose a challenge for therapy. Compared to other treatments, which preferentially cleared non-necrotic granulomas, R+PDP reduced necrotic granulomas more effectively. The increased ability of R+PDP to act on more recalcitrant necrotic granulomas suggests a novel mechanism of action. The results presented in this report reveal the potential for developing therapies involving POA that are optimized to target necrotic as well as non-necrotic granulomas as a means of achieving more complete sterilization of M. tuberculosis bacilli and preventing disease relapse when therapy ends.


Assuntos
Antituberculosos/administração & dosagem , Granuloma do Sistema Respiratório/tratamento farmacológico , Pirazinamida/análogos & derivados , Tuberculose Pulmonar/tratamento farmacológico , Aerossóis , Animais , Antituberculosos/farmacocinética , Carga Bacteriana , Modelos Animais de Doenças , Quimioterapia Combinada , Inaladores de Pó Seco , Granuloma do Sistema Respiratório/microbiologia , Granuloma do Sistema Respiratório/patologia , Cobaias , Masculino , Mycobacterium tuberculosis/efeitos dos fármacos , Necrose , Pirazinamida/administração & dosagem , Pirazinamida/farmacocinética , Absorção pelo Trato Respiratório , Rifampina/administração & dosagem , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/patologia , Tuberculose Pulmonar/microbiologia , Tuberculose Pulmonar/patologia
9.
PLoS Pathog ; 14(4): e1007011, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29709019

RESUMO

To subvert host defenses, Mycobacterium tuberculosis (Mtb) avoids being delivered to degradative phagolysosomes in macrophages by arresting the normal host process of phagosome maturation. Phagosome maturation arrest by Mtb involves multiple effectors and much remains unknown about this important aspect of Mtb pathogenesis. The SecA2 dependent protein export system is required for phagosome maturation arrest and consequently growth of Mtb in macrophages. To better understand the role of the SecA2 pathway in phagosome maturation arrest, we identified two effectors exported by SecA2 that contribute to this process: the phosphatase SapM and the kinase PknG. Then, utilizing the secA2 mutant of Mtb as a platform to study effector functions, we identified specific steps in phagosome maturation inhibited by SapM and/or PknG. By identifying a histidine residue that is essential for SapM phosphatase activity, we confirmed for the first time that the phosphatase activity of SapM is required for its effects on phagosome maturation in macrophages. We further demonstrated that SecA2 export of SapM and PknG contributes to the ability of Mtb to replicate in macrophages. Finally, we extended our understanding of the SecA2 pathway, SapM, and PknG by revealing that their contribution goes beyond preventing Mtb delivery to mature phagolysosomes and includes inhibiting Mtb delivery to autophagolysosomes. Together, our results revealed SapM and PknG to be two effectors exported by the SecA2 pathway of Mtb with distinct as well as cumulative effects on phagosome and autophagosome maturation. Our results further reveal that Mtb must have additional mechanisms of limiting acidification of the phagosome, beyond inhibiting recruitment of the V-ATPase proton pump to the phagosome, and they indicate differences between effects of Mtb on phagosome and autophagosome maturation.


Assuntos
Adenosina Trifosfatases/metabolismo , Autofagossomos/microbiologia , Proteínas de Bactérias/metabolismo , Interações Hospedeiro-Patógeno , Macrófagos/microbiologia , Proteínas de Membrana Transportadoras/metabolismo , Mycobacterium tuberculosis/patogenicidade , Fagossomos/microbiologia , Tuberculose/microbiologia , Adenosina Trifosfatases/genética , Animais , Autofagossomos/imunologia , Autofagossomos/metabolismo , Autofagia , Proteínas de Bactérias/genética , Feminino , Lisossomos/imunologia , Lisossomos/metabolismo , Lisossomos/microbiologia , Macrófagos/imunologia , Macrófagos/metabolismo , Proteínas de Membrana Transportadoras/genética , Camundongos , Camundongos Endogâmicos C57BL , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/imunologia , Fagossomos/imunologia , Fagossomos/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Bombas de Próton , Tuberculose/imunologia , Tuberculose/metabolismo
10.
Microbiol Spectr ; 5(2)2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28387178

RESUMO

All bacteria utilize pathways to export proteins from the cytoplasm to the bacterial cell envelope or extracellular space. Many exported proteins function in essential physiological processes or in virulence. Consequently, the responsible protein export pathways are commonly essential and/or are important for pathogenesis. The general Sec protein export pathway is conserved and essential in all bacteria, and it is responsible for most protein export. The energy for Sec export is provided by the SecA ATPase. Mycobacteria and some Gram-positive bacteria have two SecA paralogs: SecA1 and SecA2. SecA1 is essential and works with the canonical Sec pathway to perform the bulk of protein export. The nonessential SecA2 exports a smaller subset of proteins and is required for the virulence of pathogens such as Mycobacterium tuberculosis. In this article, we review our current understanding of the mechanism of the SecA1 and SecA2 export pathways and discuss some of their better-studied exported substrates. We focus on proteins with established functions in M. tuberculosis pathogenesis and proteins that suggest potential roles for SecA1 and SecA2 in M. tuberculosis dormancy.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Mycobacterium tuberculosis/metabolismo , Parede Celular/metabolismo , Lipoproteínas/metabolismo , Redes e Vias Metabólicas , Mycobacterium tuberculosis/enzimologia , Transporte Proteico , Proteínas SecA
11.
Mol Cell Proteomics ; 14(6): 1501-16, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25813378

RESUMO

Mycobacterium tuberculosis is an example of a bacterial pathogen with a specialized SecA2-dependent protein export system that contributes to its virulence. Our understanding of the mechanistic basis of SecA2-dependent export and the role(s) of the SecA2 pathway in M. tuberculosis pathogenesis has been hindered by our limited knowledge of the proteins exported by the pathway. Here, we set out to identify M. tuberculosis proteins that use the SecA2 pathway for their export from the bacterial cytoplasm to the cell wall. Using label-free quantitative proteomics involving spectral counting, we compared the cell wall and cytoplasmic proteomes of wild type M. tuberculosis to that of a ΔsecA2 mutant. This work revealed a role for the M. tuberculosis SecA2 pathway in the cell wall localization of solute binding proteins that work with ABC transporters to import solutes. Another discovery was a profound effect of SecA2 on the cell wall localization of the Mce1 and Mce4 lipid transporters, which contribute to M. tuberculosis virulence. In addition to the effects on solute binding proteins and Mce transporter export, our label-free quantitative analysis revealed an unexpected relationship between SecA2 and the hypoxia-induced DosR regulon, which is associated with M. tuberculosis latency. Nearly half of the transcriptionally controlled DosR regulon of cytoplasmic proteins were detected at higher levels in the ΔsecA2 mutant versus wild type M. tuberculosis. By increasing the list of M. tuberculosis proteins known to be affected by the SecA2 pathway, this study expands our appreciation of the types of proteins exported by this pathway and guides our understanding of the mechanism of SecA2-dependent protein export in mycobacteria. At the same time, the newly identified SecA2-dependent proteins are helpful for understanding the significance of this pathway to M. tuberculosis virulence and physiology.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Transporte Biológico , Proteínas de Transporte/metabolismo , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...