Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stroke ; 55(5): 1370-1380, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38572656

RESUMO

BACKGROUND: Mild chemical inhibition of mitochondrial respiration can confer resilience against a subsequent stroke or myocardial infarction, also known as preconditioning. However, the lack of chemicals that can safely inhibit mitochondrial respiration has impeded the clinical translation of the preconditioning concept. We previously showed that meclizine, an over-the-counter antivertigo drug, can toggle metabolism from mitochondrial respiration toward glycolysis and protect against ischemia-reperfusion injury in the brain, heart, and kidney. Here, we examine the mechanism of action of meclizine and report the efficacy and improved safety of the (S) enantiomer. METHODS: We determined the anoxic depolarization latency, tissue and neurological outcomes, and glucose uptake using micro-positron emission tomography after transient middle cerebral artery occlusion in mice pretreated (-17 and -3 hours) with either vehicle or meclizine. To exclude a direct effect on tissue excitability, we also examined spreading depression susceptibility. Furthermore, we accomplished the chiral synthesis of (R)- and (S)-meclizine and compared their effects on oxygen consumption and histamine H1 receptor binding along with their brain concentrations. RESULTS: Micro-positron emission tomography showed meclizine increases glucose uptake in the ischemic penumbra, providing the first in vivo evidence that the neuroprotective effect of meclizine indeed stems from its ability to toggle metabolism toward glycolysis. Consistent with reduced reliance on oxidative phosphorylation to sustain the metabolism, meclizine delayed anoxic depolarization onset after middle cerebral artery occlusion. Moreover, the (S) enantiomer showed reduced H1 receptor binding, a dose-limiting side effect for the racemate, but retained its effect on mitochondrial respiration. (S)-meclizine was at least as efficacious as the racemate in delaying anoxic depolarization onset and decreasing infarct volumes after middle cerebral artery occlusion. CONCLUSIONS: Our data identify (S)-meclizine as a promising new drug candidate with high translational potential as a chemical preconditioning agent for preemptive prophylaxis in patients with high imminent stroke or myocardial infarction risk.

2.
Dialogues Health ; 4: 100178, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38665133

RESUMO

Sick Building Syndrome (SBS) is an illness among workers linked to time spent in a building. This study aimed to investigate the Indoor Air Quality (IAQ) and symptoms of Sick Building Syndrome (SBS) among administrative office workers. The IAQ parameters consist of ventilation performance indicators, and physical and chemical parameters were measured using specified instruments for three days during weekdays. The SBS symptoms were assessed by a questionnaire adopted from the Industry Code of Practice of Indoor Air Quality (ICOP-IAQ) 2010 among 19 employees from the office in East Coast Malaysia. Relationship between past symptoms and present symptoms which are draught (past symptoms) with feeling heavy headed (present symptoms) (r = 0.559, p < 0.05), room temperature too high (past symptoms) was highly correlated with feeling heavy headed (present symptoms) (r = 0.598, p < 0.01) and cough (present symptoms) (r = 0.596, p < 0.01). Room temperature (past symptoms) has a positive medium relationship with cough (present symptoms) (r = 0.477, p < 0.05) and scaling itching scalp or ears (present symptoms) has a relationship between stuffy bad air (r = 0.475, p < 0.05) and dry air (r = 0.536, p < 0.05). There was a significant association between RH with drowsiness (χ2 = 7.090, p = 0.049) and dizziness (χ2 = 7.090, p = 0.049). The association was found between temperature and SBS symptoms between temperature with headache (χ2 = 7.574, p = 0.051), feeling heavy-headed (χ2 = 8.090, p = 0.046), and skin rash itchiness (χ2 = 7.451, p = 0.044). Air movement also showed a positive association with symptoms of feeling heavy-headed (x2 = 8.726, p = 0.021). PM10 has positive significance with SBSS which are feeling heavy-headed (χ2 = 7.980, p = 0.023), and eyer's irritation (χ2 = 7.419, p = 0.038). The conclusion of this study showed that there were positive significant between temperature and relative humidity toward SBSS.

3.
J Mol Biol ; 435(23): 168317, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37858707

RESUMO

Ferredoxins (FDXs) are evolutionarily conserved iron-sulfur (Fe-S) proteins that function as electron transfer proteins in diverse metabolic pathways. Mammalian mitochondria contain two ferredoxins, FDX1 and FDX2, which share a high degree of structural similarity but exhibit different functionalities. Previous studies have established the unique role of FDX2 in the biogenesis of Fe-S clusters; however, FDX1 seems to have multiple targets in vivo, some of which are only recently emerging. Using CRISPR-Cas9-based loss-of-function studies in rat cardiomyocyte cell line, we demonstrate an essential requirement of FDX1 in mitochondrial respiration and energy production. We attribute reduced mitochondrial respiration to a specific decrease in the abundance and assembly of cytochrome c oxidase (CcO), a mitochondrial heme-copper oxidase and the terminal enzyme of the mitochondrial respiratory chain. FDX1 knockout cells have reduced levels of copper and heme a/a3, factors that are essential for the maturation of the CcO enzyme complex. Copper supplementation failed to rescue CcO biogenesis, but overexpression of heme a synthase, COX15, partially rescued COX1 abundance in FDX1 knockout cells. This finding links FDX1 function to heme a biosynthesis, and places it upstream of COX15 in CcO biogenesis like its ancestral yeast homolog. Taken together, our work has identified FDX1 as a critical CcO biogenesis factor in mammalian cells.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons , Ferredoxinas , Animais , Complexo IV da Cadeia de Transporte de Elétrons/biossíntese , Complexo IV da Cadeia de Transporte de Elétrons/genética , Ferredoxinas/genética , Ferredoxinas/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Ratos , Linhagem Celular , Miócitos Cardíacos , Cobre/metabolismo
4.
ACS Omega ; 8(28): 24797-24812, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37483193

RESUMO

Three novel natural amino acid-derived sodium L-2-(1-imidazolyl) alkanoic acids (IZSs), namely, sodium 2-(1H-imidazol-1-yl)-4-methylpentanoate (IZS-L), sodium 2-(1H-imidazol-1-yl)-3-phenylpropanoate (IZS-P), and sodium 2-(1H-imidazol-1-yl)-4-(methylthio)butanoate (IZS-M), were investigated as corrosion inhibitors. The IZSs were synthesized following the green chemistry principles, and their structure was characterized using FTIR and NMR techniques. The corrosion study results reveal that a moderate concentration of IZSs (having low solution conductivity) showed potential corrosion inhibition for mild steel in artificial seawater. At longer immersion, IZS-P forms a uniform protective film and exhibits the potential inhibition efficiency of 82.46% at 8.4 mmol L-1. Tafel polarization results reveal that IZS-P and IZS-M act as mixed types with an anodic predominantly corrosion inhibitor. The electrochemical impedance spectroscopy results signify that IZSs inhibit mild steel corrosion through the formation of an inhibitor film on the metal surface, which was further confirmed by the FTIR, SEM, EDX, and XPS studies. DFT result shows that in IZS-P, the benzylic group (-CH2-Ph) has greater electron distribution compared to isobutyl (-CH2CH(CH3)2) in IZS-L and methythioethyl group (-CH2CH2SCH3) which supported the corrosion inhibition performance at longer immersion [IZS-P (82.46%) > IZS-M (67.19%) > IZS-L (24.77%)].

5.
Environ Sci Pollut Res Int ; 30(31): 76297-76307, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37246180

RESUMO

Corrosion inhibitors have offered new opportunities to bring positive impacts on our society, especially when it has helped in protecting metals against corrosion in an aqueous solution. Unfortunately, the commonly known corrosion inhibitors used to protect metals or alloys against corrosion are invariably related to one or more drawbacks such as the employment of hazardous anti-corrosion agents, leakage of anti-corrosion agents in aqueous solution, and high solubility of anti-corrosion agents in water. Over the years, using food additives as anti-corrosion agents have drawn interest as it offers biocompatibility, less toxic, and promising applications. In general, food additives are considered safe for human consumption worldwide, and it was rigorously tested and approved by the US Food and Drug Administration. Nowadays, researchers are more interested in innovating and using green, less toxic, and economical corrosion inhibitors in metal and alloy protection. As such, we have reviewed the use of food additives to protect metals and alloys against corrosion. The current review is significant and differs from the previous review articles made on corrosion inhibitors, in which the new role of food additives is highlighted as green and environmental-friendly substances in the protection of metals and alloys against corrosion. It is anticipated that the next generation will be utilizing non-toxic and sustainable anti-corrosion agents, in which food additives might be the potential to fulfill the green chemistry goals.


Assuntos
Ligas , Metais , Humanos , Ligas/química , Metais/química , Água/química
6.
Proc Natl Acad Sci U S A ; 120(10): e2216722120, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36848556

RESUMO

Recent studies have uncovered the therapeutic potential of elesclomol (ES), a copper-ionophore, for copper deficiency disorders. However, we currently do not understand the mechanism by which copper brought into cells as ES-Cu(II) is released and delivered to cuproenzymes present in different subcellular compartments. Here, we have utilized a combination of genetic, biochemical, and cell-biological approaches to demonstrate that intracellular release of copper from ES occurs inside and outside of mitochondria. The mitochondrial matrix reductase, FDX1, catalyzes the reduction of ES-Cu(II) to Cu(I), releasing it into mitochondria where it is bioavailable for the metalation of mitochondrial cuproenzyme- cytochrome c oxidase. Consistently, ES fails to rescue cytochrome c oxidase abundance and activity in copper-deficient cells lacking FDX1. In the absence of FDX1, the ES-dependent increase in cellular copper is attenuated but not abolished. Thus, ES-mediated copper delivery to nonmitochondrial cuproproteins continues even in the absence of FDX1, suggesting alternate mechanism(s) of copper release. Importantly, we demonstrate that this mechanism of copper transport by ES is distinct from other clinically used copper-transporting drugs. Our study uncovers a unique mode of intracellular copper delivery by ES and may further aid in repurposing this anticancer drug for copper deficiency disorders.


Assuntos
Cobre , Complexo IV da Cadeia de Transporte de Elétrons , Hidrazinas , Ionóforos , Ferredoxinas/metabolismo
7.
Trends Endocrinol Metab ; 34(1): 21-33, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36435678

RESUMO

Copper is an essential micronutrient that serves as a cofactor for enzymes involved in diverse physiological processes, including mitochondrial energy generation. Copper enters cells through a dedicated copper transporter and is distributed to intracellular cuproenzymes by copper chaperones. Mitochondria are critical copper-utilizing organelles that harbor an essential cuproenzyme cytochrome c oxidase, which powers energy production. Mutations in copper transporters and chaperones that perturb mitochondrial copper homeostasis result in fatal genetic disorders. Recent studies have uncovered the therapeutic potential of elesclomol, a copper ionophore, for the treatment of copper deficiency disorders such as Menkes disease. Here we review the role of copper in mitochondrial energy metabolism in the context of human diseases and highlight the recent developments in copper therapeutics.


Assuntos
Cobre , Mitocôndrias , Humanos , Cobre/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Transporte Biológico , Homeostase , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo
8.
J Biol Chem ; 298(7): 102139, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35714767

RESUMO

Copper (Cu) and iron (Fe) are redox-active metals that serve as cofactors for many essential cellular enzymes. Disruption in the intracellular homeostasis of these metals results in debilitating and frequently fatal human disorders, such as Menkes disease and Friedreich's ataxia. Recently, we reported that an investigational anticancer drug, elesclomol (ES), can deliver Cu to critical mitochondrial cuproenzymes and has the potential to be repurposed for the treatment of Cu deficiency disorders. Here, we sought to determine the specificity of ES and the ES-Cu complex in delivering Cu to cuproenzymes in different intracellular compartments. Using a combination of yeast genetics, subcellular fractionation, and inductively coupled plasma-mass spectrometry-based metal measurements, we showed that ES and ES-Cu treatment results in an increase in cellular and mitochondrial Fe content, along with the expected increase in Cu. Using yeast mutants of Cu and Fe transporters, we demonstrate that ES-based elevation in cellular Fe levels is independent of the major cellular Cu importer but is dependent on the Fe importer Ftr1 and its partner Fet3, a multicopper oxidase. As Fet3 is metalated in the Golgi lumen, we sought to uncover the mechanism by which Fet3 receives Cu from ES. Using yeast knockouts of genes involved in Cu delivery to Fet3, we determined that ES can bypass Atx1, a metallochaperone involved in Cu delivery to the Golgi membrane Cu pump, Ccc2, but not Ccc2 itself. Taken together, our study provides a mechanism by which ES distributes Cu in cells and impacts cellular and mitochondrial Fe homeostasis.


Assuntos
Cobre , Hidrazinas , Ferro , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Cobre/metabolismo , Humanos , Hidrazinas/farmacologia , Ferro/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
Genetics ; 221(4)2022 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-35666203

RESUMO

Cytochrome c oxidase (CcO) is a multimeric copper-containing enzyme of the mitochondrial respiratory chain that powers cellular energy production. The two core subunits of cytochrome c oxidase, Cox1 and Cox2, harbor the catalytic CuB and CuA sites, respectively. Biogenesis of each copper site occurs separately and requires multiple proteins that constitute the mitochondrial copper delivery pathway. Currently, the identity of all the members of the pathway is not known, though several evolutionarily conserved twin CX9C motif-containing proteins have been implicated in this process. Here, we performed a targeted yeast suppressor screen that placed Coa4, a twin CX9C motif-containing protein, in the copper delivery pathway to the Cox1 subunit. Specifically, we show that overexpression of Cox11, a copper metallochaperone required for the formation of CuB site, can restore Cox1 abundance, cytochrome c oxidase assembly, and mitochondrial respiration in coa4Δ cells. This rescue is dependent on the copper-coordinating cysteines of Cox11. The abundance of Coa4 and Cox11 in mitochondria is reciprocally regulated, further linking Coa4 to the CuB site biogenesis. Additionally, we find that coa4Δ cells have reduced levels of copper and exogenous copper supplementation can partially ameliorate its respiratory-deficient phenotype, a finding that connects Coa4 to cellular copper homeostasis. Finally, we demonstrate that human COA4 can replace the function of yeast Coa4 indicating its evolutionarily conserved role. Our work provides genetic evidences for the role of Coa4 in the copper delivery pathway to the CuB site of cytochrome c oxidase.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons , Saccharomyces cerevisiae , Cobre , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Saccharomyces cerevisiae/metabolismo
10.
Hum Mol Genet ; 31(3): 376-385, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-34494107

RESUMO

Calcium signaling via mitochondrial calcium uniporter (MCU) complex coordinates mitochondrial bioenergetics with cellular energy demands. Emerging studies show that the stability and activity of the pore-forming subunit of the complex, MCU, is dependent on the mitochondrial phospholipid, cardiolipin (CL), but how this impacts calcium-dependent mitochondrial bioenergetics in CL-deficiency disorder like Barth syndrome (BTHS) is not known. Here we utilized multiple models of BTHS including yeast, mouse muscle cell line, as well as BTHS patient cells and cardiac tissue to show that CL is required for the abundance and stability of the MCU-complex regulatory subunit MICU1. Interestingly, the reduction in MICU1 abundance in BTHS mitochondria is independent of MCU. Unlike MCU and MICU1/MICU2, other subunit and associated factor of the uniporter complex, EMRE and MCUR1, respectively, are not affected in BTHS models. Consistent with the decrease in MICU1 levels, we show that the kinetics of MICU1-dependent mitochondrial calcium uptake is perturbed and acute stimulation of mitochondrial calcium signaling in BTHS myoblasts fails to activate pyruvate dehydrogenase, which in turn impairs the generation of reducing equivalents and blunts mitochondrial bioenergetics. Taken together, our findings suggest that defects in mitochondrial calcium signaling could contribute to cardiac and skeletal muscle pathologies observed in BTHS patients.


Assuntos
Síndrome de Barth , Cálcio , Animais , Síndrome de Barth/genética , Cálcio/metabolismo , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Sinalização do Cálcio , Proteínas de Ligação ao Cálcio/metabolismo , Humanos , Camundongos , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Saccharomyces cerevisiae/metabolismo
11.
J Biol Chem ; 296: 100485, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33662401

RESUMO

Copper is essential for the activity and stability of cytochrome c oxidase (CcO), the terminal enzyme of the mitochondrial respiratory chain. Loss-of-function mutations in genes required for copper transport to CcO result in fatal human disorders. Despite the fundamental importance of copper in mitochondrial and organismal physiology, systematic identification of genes that regulate mitochondrial copper homeostasis is lacking. To discover these genes, we performed a genome-wide screen using a library of DNA-barcoded yeast deletion mutants grown in copper-supplemented media. Our screen recovered a number of genes known to be involved in cellular copper homeostasis as well as genes previously not linked to mitochondrial copper biology. These newly identified genes include the subunits of the adaptor protein 3 complex (AP-3) and components of the cellular pH-sensing pathway Rim20 and Rim21, both of which are known to affect vacuolar function. We find that AP-3 and Rim mutants exhibit decreased vacuolar acidity, which in turn perturbs mitochondrial copper homeostasis and CcO function. CcO activity of these mutants could be rescued by either restoring vacuolar pH or supplementing growth media with additional copper. Consistent with these genetic data, pharmacological inhibition of the vacuolar proton pump leads to decreased mitochondrial copper content and a concomitant decrease in CcO abundance and activity. Taken together, our study uncovered novel genetic regulators of mitochondrial copper homeostasis and provided a mechanism by which vacuolar pH impacts mitochondrial respiration through copper homeostasis.


Assuntos
Cobre/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Mitocôndrias/enzimologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Meios de Cultura , Complexo IV da Cadeia de Transporte de Elétrons/genética , Genoma Fúngico , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Homeostase , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Deleção de Sequência
12.
Nat Commun ; 11(1): 4866, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32978391

RESUMO

Mitochondria house evolutionarily conserved pathways of carbon and nitrogen metabolism that drive cellular energy production. Mitochondrial bioenergetics is regulated by calcium uptake through the mitochondrial calcium uniporter (MCU), a multi-protein complex whose assembly in the inner mitochondrial membrane is facilitated by the scaffold factor MCUR1. Intriguingly, many fungi that lack MCU contain MCUR1 homologs, suggesting alternate functions. Herein, we characterize Saccharomyces cerevisiae homologs Put6 and Put7 of MCUR1 as regulators of mitochondrial proline metabolism. Put6 and Put7 are tethered to the inner mitochondrial membrane in a large hetero-oligomeric complex, whose abundance is regulated by proline. Loss of this complex perturbs mitochondrial proline homeostasis and cellular redox balance. Yeast cells lacking either Put6 or Put7 exhibit a pronounced defect in proline utilization, which can be corrected by the heterologous expression of human MCUR1. Our work uncovers an unexpected role of MCUR1 homologs in mitochondrial proline metabolism.


Assuntos
Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Prolina/metabolismo , Saccharomyces cerevisiae/metabolismo , Canais de Cálcio , Regulação Fúngica da Expressão Gênica , Genes Fúngicos/genética , Homeostase , Humanos , Proteínas de Membrana/genética , Redes e Vias Metabólicas/genética , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Transcriptoma
13.
Science ; 368(6491): 620-625, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32381719

RESUMO

Loss-of-function mutations in the copper (Cu) transporter ATP7A cause Menkes disease. Menkes is an infantile, fatal, hereditary copper-deficiency disorder that is characterized by progressive neurological injury culminating in death, typically by 3 years of age. Severe copper deficiency leads to multiple pathologies, including impaired energy generation caused by cytochrome c oxidase dysfunction in the mitochondria. Here we report that the small molecule elesclomol escorted copper to the mitochondria and increased cytochrome c oxidase levels in the brain. Through this mechanism, elesclomol prevented detrimental neurodegenerative changes and improved the survival of the mottled-brindled mouse-a murine model of severe Menkes disease. Thus, elesclomol holds promise for the treatment of Menkes and associated disorders of hereditary copper deficiency.


Assuntos
Cobre/metabolismo , Hidrazinas/uso terapêutico , Síndrome dos Cabelos Torcidos/tratamento farmacológico , Animais , Transporte Biológico/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Linhagem Celular , Transportador de Cobre 1/genética , Modelos Animais de Doenças , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Hidrazinas/farmacologia , Masculino , Síndrome dos Cabelos Torcidos/metabolismo , Síndrome dos Cabelos Torcidos/patologia , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Doenças Neurodegenerativas/prevenção & controle , Ratos
14.
Biochem J ; 474(11): 1807-1821, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28389436

RESUMO

The proton gradient acts as the driving force for the transport of many metabolites across fungal and plant plasma membranes. Identifying the mechanism of proton relay is critical for understanding the mechanism of transport mediated by these transporters. We investigated two strategies for identifying residues critical for proton-dependent substrate transport in the yeast glutathione transporter, Hgt1p, a member of the poorly understood oligopeptide transporter family of transporters. In the first strategy, we tried to identify the pH-independent mutants that could grow at higher pH when dependant on glutathione transport. Screening a library of 269 alanine mutants of the transmembrane domains (TMDs) along with a random mutagenesis strategy yielded two residues (E135K on the cusp of TMD2 and N710S on TMD12) that permitted growth on glutathione at pH 8.0. Further analysis revealed that these residues were not involved in proton symport even though they conferred better transport at a higher pH. The second strategy involved a knowledge-driven approach, targeting 31 potential residues based on charge, conservation and location. Mutation of these residues followed by functional and biochemical characterization revealed E177A, Y193A, D335A, Y374A, H445A and R554A as being defective in proton transport. Further analysis enabled possible roles of these residues to be assigned in proton relay. The implications of these findings in relation to Hgt1p and the suitability of these strategic approaches for identifying such residues are discussed.


Assuntos
Glutationa/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Modelos Moleculares , Proteínas de Transporte de Monossacarídeos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Sítios de Ligação , Biocatálise , Transporte Biológico Ativo , Bases de Dados de Ácidos Nucleicos , Bases de Dados de Proteínas , Regulação Fúngica da Expressão Gênica , Biblioteca Gênica , Concentração de Íons de Hidrogênio , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Proteínas de Transporte de Monossacarídeos/química , Proteínas de Transporte de Monossacarídeos/genética , Mutagênese Sítio-Dirigida , Mutação , Estrutura Terciária de Proteína , Transporte Proteico , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Alinhamento de Sequência
15.
Microbes Infect ; 18(12): 813-821, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27492855

RESUMO

Drosophila melanogaster is an emerging model system for the study of evolutionary ecology of immunity. However, a large number of studies have used non natural pathogens as very few natural pathogens have been isolated and identified. Our aim was to isolate and characterize natural pathogen/s of D. melanogaster. A bacterial pathogen was isolated from wild caught Drosophila spp., identified as a new strain of Staphylococcus succinus subsp. succinus and named PK-1. This strain induced substantial mortality (36-62%) in adults of several laboratory populations of D. melanogaster. PK-1 grew rapidly within the body of the flies post infection and both males and females had roughly same number of colony forming units. Mortality was affected by mode of infection and dosage of the pathogen. However mating status of the host had no effect on mortality post infection. Given that there are very few known natural bacterial pathogens of D. melanogaster and that PK-1 can establish a sustained infection across various outbred and inbred populations of D. melanogaster this new isolate is a potential resource for future studies on immunity.


Assuntos
Drosophila melanogaster/microbiologia , Drosophila melanogaster/fisiologia , Staphylococcus/isolamento & purificação , Animais , Feminino , Masculino , Staphylococcus/classificação , Análise de Sobrevida
16.
Biochem J ; 473(15): 2369-82, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27252386

RESUMO

The high-affinity glutathione transporter Hgt1p of Saccharomyces cerevisiae belongs to a relatively new and structurally uncharacterized oligopeptide transporter (OPT) family. To understand the structural features required for interaction with Hgt1p, a quantitative investigation of substrate specificity of Hgt1p was carried out. Hgt1p showed a higher affinity for reduced glutathione (GSH), whereas it transported oxidized glutathione (GSSG) and other glutathione conjugates with lower affinity. To identify the residues of Hgt1p critical for substrate binding and translocation, all amino acid residues of the 13 predicted transmembrane domains (TMDs) have been subjected to mutagenesis. Functional evaluation of these 269 mutants by growth and biochemical assay followed by kinetic analysis of the severely defective mutants including previous mutagenic studies on this transporter have led to the identification of N124 (TMD1), V185 (TMD3), Q222, G225 and Y226 (TMD4), P292 (TMD5), Y374 (TMD6), L429 (TMD7) and F523 and Q526 (TMD9) as critical for substrate binding with at least 3-fold increase in Km upon mutagenesis to alanine. In addition residues Y226 and Y374 appeared to be important for differential substrate specificity. An ab initio model of Hgt1p was built and refined using these mutagenic data that yielded a helical arrangement that includes TMD3, TMD4, TMD5, TMD6, TMD7, TMD9 and TMD13 as pore-lining helices with the functionally important residues in a channel-facing orientation. Taken together the results of this study provides the first mechanistic insights into glutathione transport by a eukaryotic high-affinity glutathione transporter.


Assuntos
Proteínas de Transporte de Monossacarídeos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Aminoácidos/metabolismo , Transporte Biológico , Glutationa/metabolismo , Cinética , Proteínas de Transporte de Monossacarídeos/química , Proteínas de Transporte de Monossacarídeos/genética , Mutagênese Sítio-Dirigida , Oxirredução , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...