Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 14(2): e0212359, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30763398

RESUMO

Rosellinia necatrix is the causal agent of avocado white root rot (WRR). Control of this soil-borne disease is difficult, and the use of tolerant rootstocks may present an effective method to lessen its impact. To date, no studies on the molecular mechanisms regulating the avocado plant response towards this pathogen have been undertaken. To shed light on the mechanisms underpinning disease susceptibility and tolerance, molecular analysis of the gene's response in two avocado rootstocks with a contrasting disease reaction was assessed. Gene expression profiles against R. necatrix were carried out in the susceptible 'Dusa' and the tolerant selection BG83 avocado genotypes by micro-array analysis. In 'Dusa', the early response was mainly related to redox processes and cell-wall degradation activities, all becoming enhanced after disease progression affected photosynthetic capacity, whereas tolerance to R. necatrix in BG83 relied on the induction of protease inhibitors and their negative regulators, as well as genes related to tolerance to salt and osmotic stress such as aspartic peptidase domain-containing proteins and gdsl esterase lipase proteins. In addition, three protease inhibitors were identified, glu protease, trypsin and endopeptidase inhibitors, which were highly overexpressed in the tolerant genotype when compared to susceptible 'Dusa', after infection with R. necatrix, reaching fold change values of 52, 19 and 38, respectively. The contrasting results between 'Dusa' and BG83 provide new insights into the different mechanisms involved in avocado tolerance to Phytophthora cinnamomi and R. necatrix, which are consistent with their biotrophic and necrotrophic lifestyles, respectively. The differential induction of genes involved in salt and osmotic stress in BG83 could indicate that R. necatrix penetration into the roots is associated with osmotic effects, suggesting that BG83's tolerance to R. necatrix is related to the ability to withstand osmotic imbalance. In addition, the high expression of protease inhibitors in tolerant BG83 compared to susceptible 'Dusa' after infection with the pathogen suggests the important role that these proteins may play in the defence of avocado rootstocks against R. necatrix.


Assuntos
Resistência à Doença/genética , Persea/metabolismo , Doenças das Plantas/genética , Xylariales/fisiologia , Análise por Conglomerados , Regulação da Expressão Gênica de Plantas , Genótipo , Persea/genética , Persea/microbiologia , Phytophthora/fisiologia , Doenças das Plantas/microbiologia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Análise de Componente Principal , Inibidores de Proteases/metabolismo
2.
Front Plant Sci ; 9: 977, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30154802

RESUMO

Many type III-secreted effectors suppress plant defenses, but can also activate effector-triggered immunity (ETI) in resistant backgrounds. ETI suppression has been shown for a number of type III effectors (T3Es) and ETI-suppressing effectors are considered part of the arms race model for the co-evolution of bacterial virulence and plant defense. However, ETI suppression activities have been shown mostly between effectors not being naturally expressed within the same strain. Furthermore, evolution of effector families is rarely explained taking into account that selective pressure against ETI-triggering effectors may be compensated by ETI-suppressing effector(s) translocated by the same strain. The HopZ effector family is one of the most diverse, displaying a high rate of loss and gain of alleles, which reflects opposing selective pressures. HopZ effectors trigger defense responses in a variety of crops and some have been shown to suppress different plant defenses. Mutational changes in the sequence of ETI-triggering effectors have been proposed to result in the avoidance of detection by their respective hosts, in a process called pathoadaptation. We analyze how deleting or overexpressing HopZ1a and HopZ3 affects virulence of HopZ-encoding and non-encoding strains. We find that both effectors trigger immunity in their plant hosts only when delivered from heterologous strains, while immunity is suppressed when delivered from their native strains. We carried out screens aimed at identifying the determinant(s) suppressing HopZ1a-triggered and HopZ3-triggered immunity within their native strains, and identified several effectors displaying suppression of HopZ3-triggered immunity. We propose effector-mediated cross-suppression of ETI as an additional force driving evolution of the HopZ family.

3.
PLoS One ; 7(4): e35871, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22558247

RESUMO

Several reports have recently contributed to determine the effector inventory of the sequenced strain Pseudomonas syringae pv. phaseolicola (Pph) 1448a. However, the contribution to virulence of most of these effectors remains to be established. Genetic analysis of the contribution to virulence of individual P. syringae effectors has been traditionally hindered by the lack of phenotypes of the corresponding knockout mutants, largely attributed to a high degree of functional redundancy within their effector inventories. In support of this notion, effectors from Pseudomonas syringae pv. tomato (Pto) DC3000 have been classified into redundant effector groups (REGs), analysing virulence of polymutants in the model plant Nicotiana benthamiana. However, using competitive index (CI) as a virulence assay, we were able to establish the individual contribution of AvrPto1(Pto) (DC3000) to Pto DC3000 virulence in tomato, its natural host, even though typically, contribution to virulence of AvrPto1 is only shown in strains also lacking AvrPtoB (also called HopAB2), a member of its REG. This report raised the possibility that even effectors targeting the same defence signalling pathway may have an individual contribution to virulence, and pointed out to CI assays as the means to establish such a contribution for individual effectors. In this work, we have analysed the individual contribution to virulence of the majority of previously uncharacterised Pph 1448a effectors, by monitoring the development of disease symptoms and determining the CI of single knockout mutants at different stages of growth within bean, its natural host. Despite their potential functional redundancy, we have found individual contributions to virulence for six out of the fifteen effectors analysed. In addition, we have analysed the functional relationships between effectors displaying individual contribution to virulence, highlighting the diversity that these relationships may present, and the interest of analysing their functions within the context of the infection.


Assuntos
Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Pseudomonas syringae , Fatores de Virulência/genética , Virulência/genética , Fabaceae/microbiologia , Teste de Complementação Genética , Solanum lycopersicum/microbiologia , Mutação , Doenças das Plantas/microbiologia , Pseudomonas syringae/genética , Pseudomonas syringae/patogenicidade , Nicotiana/microbiologia
4.
J Bacteriol ; 192(17): 4474-88, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20601478

RESUMO

In Pseudomonas syringae, the type III secretion system (T3SS) is essential for disease in compatible hosts and for eliciting the hypersensitive response in incompatible hosts. P. syringae pathovars secrete a variable number of type III effectors that form their secretomes. The secretome of Pseudomonas syringae pv. phaseolicola 1448a (Pph1448a) currently includes 22 experimentally validated effectors, one HrpL-regulated candidate for which translocation results have been inconsistent, two translocated candidates for which in planta expression has not been established, one bioinformatically identified candidate, and six candidates that have been experimentally discarded. We analyzed the translocation and/or expression of these and other candidates to complete the Pph1448a effector inventory, bringing this inventory to 27 bona fide effectors, including a new one that does not belong to any of the previously described effector families. We developed a simple process for rapidly making single and double knockout mutants and apply it to the generation of an effector mutant collection that includes single knockouts for the majority of the Pph1448a effector inventory. We also generated two double mutant strains containing effectors with potentially redundant functions and analyzed the virulence of the single and double mutant strains as well as strains expressing each of the effectors from a plasmid. We demonstrate that AvrB4-1 and AvrB4-2, as well as HopW1-1 and HopW1-2, are fully redundant and contribute to virulence in bean plants, thus validating this approach for dissecting the contribution of the Pph1448a type III effector inventory to virulence. We also analyzed the effect that the expression of these four effectors from Pseudomonas syringae pv. tomato DC3000 (PtoDC3000) has during its interaction with Arabidopsis thaliana, establishing that AvrB4-1, but not the others, determines a restriction of bacterial growth that takes place mostly independently of the salicylic acid (SA)-signaling pathway.


Assuntos
Proteínas de Bactérias/metabolismo , Fabaceae/microbiologia , Interações Hospedeiro-Patógeno , Doenças das Plantas/microbiologia , Pseudomonas syringae/fisiologia , Pseudomonas syringae/patogenicidade , Arabidopsis/microbiologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Solanum lycopersicum/microbiologia , Mutação , Plasmídeos , Pseudomonas syringae/genética , Pseudomonas syringae/metabolismo , Virulência
5.
Mol Plant Pathol ; 8(4): 437-50, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20507512

RESUMO

SUMMARY: Mixed infections have been broadly applied to the study of bacterial pathogens in animals. However, the application of mixed infection-based methods in plant pathogens has been very limited. An important factor for this limitation is the different dynamics that mixed infections have been reported to show in the different types of models. Reports in systemic animal infections have shown that any bacterium has the same probability of multiplying within a mixed infection than in a single infection. However, in plant pathogens, bacterial growth in a mixed infection does not seem to reflect growth in a single infection, as growth interference takes place between the co-inoculated strains. Here we show that growth interference in mixed infection between different Pseudomonas syringae strains is not intrinsic to growth within a plant host, but dependent on the dose of inoculation. We also show that the minimal inoculation dose required to avoid interference depends on the aggressiveness of the pathogen as well as the type of virulence factor that differentiates the co-inoculated strains. This study establishes the basis for the use of mixed infection-based applications to the study of phytopathogenic bacteria. Analysis of the virulence of a type III effector mutant and an hrp regulatory mutant illustrate the increased accuracy and sensitivity of competitive index assays vs. regular growth assays. Several applications of this assay are addressed, and potential implications for this and other mixed infection-based methods are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...