Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biomech ; 164: 111988, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38364489

RESUMO

The aim of this study is to qualitatively characterize the in vivo chronic scaffolding force of the Magmaris® Resorbable Magnesium Scaffold (RMS). This important parameter of scaffolds must be balanced between sufficient radial support during the healing period of the vessel and avoidance of long-term vessel caging. A finite element model was established using preclinical animal data and used to predict the device diameter and scaffolding force up to 90 days after implantation. To account for scaffold resorption, it included backbone degradation as well as formation of discontinuities as observed in vivo. The predictions of the model regarding acute recoil and chronic development of the device diameter were in good agreement with the preclinical data, supporting the validity of the model. It was found that after 28 and 90 days, the Magmaris® RMS retained 90 % and 47 % of its initial scaffolding force, respectively. The reduction in scaffolding force was mainly driven by discontinuities in the meandering segments. Finite element analysis combined with preclinical data is a reliable method to characterize the chronic scaffolding force.


Assuntos
Doença da Artéria Coronariana , Stents Farmacológicos , Animais , Implantes Absorvíveis , Magnésio , Resultado do Tratamento , Desenho de Prótese
2.
Vascul Pharmacol ; 153: 107170, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37659608

RESUMO

AIMS: Despite advances in pharmacotherapy and device innovation, in-stent restenosis (ISR) and stent thrombosis (ST) remain serious complications following percutaneous coronary intervention (PCI) procedure with stent implantation. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is an enzyme involved in plasma cholesterol homeostasis and recently emerged as a therapeutic target for hypercholesterolemia. Antibody-based PCSK9 inhibition is increasingly used in different subsets of patients, including those undergoing PCI. However, whether PCSK9 inhibition affects outcome after stent implantation remains unknown. METHODS AND RESULTS: 12 to 14 weeks old C57Bl/6 mice underwent carotid artery bare-metal stent implantation. Compared to sham intervention, stent implantation was associated with increased expression of several inflammatory mediators, including PCSK9. The increase in PCSK9 protein expression was confirmed in the stented vascular tissue, but not in plasma. To inhibit PCSK9, alirocumab was administered weekly to mice before stent implantation. After 6 weeks, histological examination revealed increased intimal hyperplasia in the stented segment of alirocumab-treated animals compared to controls. In vitro, alirocumab promoted migration and inhibited the onset of senescence in primary human vascular smooth muscle cells (VSMC). Conversely, it blunted the migration and increased the senescence of endothelial cells (EC). CONCLUSION: Antibody-based PCSK9 inhibition promotes in-stent intimal hyperplasia and blunts vascular healing by increasing VSMC migration, while reducing that of EC. This effect is likely mediated, at least in part, by a differential effect on VSMC and EC senescence. The herein-reported data warrant additional investigations concerning the use of PCSK9 inhibitors in patients undergoing PCI with stent implantation.


Assuntos
Intervenção Coronária Percutânea , Pró-Proteína Convertase 9 , Humanos , Animais , Camundongos , Pró-Proteína Convertase 9/metabolismo , Intervenção Coronária Percutânea/efeitos adversos , Hiperplasia/etiologia , Células Endoteliais/metabolismo , Stents
3.
EuroIntervention ; 19(2): e167-e175, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-36636768

RESUMO

BACKGROUND: The novel sirolimus-eluting resorbable scaffold DREAMS 3G was designed as a third-generation development of its predecessor, the Magmaris scaffold. AIMS: This preclinical study aimed to examine the qualitative and temporal course of the degradation of the DREAMS 3G relative to the Magmaris scaffold. METHODS: Forty-nine DREAMS 3G and 24 Magmaris scaffolds were implanted into 48 mini swine for degradation kinetics analysis. Another DREAMS 3G was implanted into one mini swine for crystallinity analysis of the degradation end product after 730 days. Degradation kinetics were determined at 28, 90, 120, 180, and 365 days. RESULTS: Discontinuity density in DREAMS 3G was significantly lower than that in Magmaris scaffolds for the follow-up timepoints of 90 and 120 days. Planimetric analysis indicated 99.6% backbone degradation for DREAMS 3G at 12 months. Compared to the Magmaris scaffold, individual strut degradation in DREAMS 3G showed less variability and the remaining backbone core was more homogeneous. The degradation end product of DREAMS 3G manifested as calcium phosphate with a minor share of aluminium phosphate. CONCLUSIONS: DREAMS 3G showed almost complete degradation after one year, with amorphous calcium and aluminium phosphate as the end products of degradation. Despite its thinner struts, scaffold discontinuity was significantly lower in the DREAMS 3G than in the Magmaris scaffold, likely providing a longer scaffolding time.


Assuntos
Implantes Absorvíveis , Intervenção Coronária Percutânea , Animais , Suínos , Magnésio , Cinética , Fosfatos , Desenho de Prótese , Resultado do Tratamento
4.
J Mech Behav Biomed Mater ; 91: 174-181, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30583263

RESUMO

Resorbable magnesium scaffolds are used for the treatment of atherosclerotic coronary vascular disease and furthermore, for vascular restoration therapy. Recently, the first-in-man clinical studies with Magmaris showed promising results regarding the target lesion failure as well as vasomotion properties after 12 and 24 month. The consistency of in vivo degraded magnesium alloys in a cardiovascular environment is qualitatively described in literature, but only little has been disclosed about the actual change in mechanical properties and the behavior of the magnesium alloy degradation products. In the present study, uncoated magnesium scaffolds 3.0 × 20 mm were implanted in coronary arteries of two healthy Goetinnger mini-swine. The scaffolds were explanted to evaluate the mechanical properties of the degraded magnesium scaffolds after 180 days in vivo. Ex vivo sample preparation and test conditions were adapted to a customized compression test setup which was developed to investigate the micro-scale scaffold fragments (width 225 ±â€¯75 µm, thickness 150 µm). As reference bare undegraded magnesium scaffold fragments were tested. Mechanical parameters relating to force as a function of displacement were determined for both sample groups. The undegraded samples showed no fracturing at the maximum applied force of 8 N, whereas the in vivo degraded test samples showed forces of 0.411 ±â€¯0.197 N at the first fracturing and a maximum force of 0.956 ±â€¯0.525 N. The deformation work, calculated as area beneath the force-displacement curve, of the in vivo degraded test samples was reduced by approximately 87-88% compared to the undegraded samples (5.20 mN mm and 40.79 mN mm, both at 7.5% deformation). The indication for a complete loss of structural integrity through a reduction of mechanical properties after a certain degradation time increases the chance to restore vascular function and physiological vasomotion in the stented vessel compartment.


Assuntos
Implantes Absorvíveis , Magnésio/química , Magnésio/metabolismo , Fenômenos Mecânicos , Animais , Vasos Coronários , Teste de Materiais , Suínos
5.
EuroIntervention ; 14(13): 1420-1427, 2019 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-29741484

RESUMO

AIMS: The present study aimed to investigate whether the Magmaris resorbable magnesium scaffold (RMS) has platelet-repelling properties by comparing its acute thrombogenicity with an equivalent stainless steel stent in an arteriovenous shunt model. METHODS AND RESULTS: An ex vivo porcine carotid jugular arteriovenous shunt was established and connected to Sylgard tubing containing the Magmaris RMS with sirolimus-eluting PLLA coating and an equivalent 316L stainless steel stent with sirolimus-eluting PLLA coating. Six shunts (two shunt runs per pig) were run comparing the two scaffolds (n=9) in alternating order. Nested generalised linear mixed models were employed to compare variables between scaffold groups. Confocal fluorescent microscopy containing CD61/CD42b demonstrated that the 316L equivalent stent had significantly greater platelet coverage of the total scaffold compared with Magmaris (5.8% vs. 2.8%, adjusted rate ratio 2.21 [1.41, 3.47], p=0.012). Scanning electron microscopy demonstrated significantly greater thrombus deposition on the 316L equivalent stent as a percentage of the total scaffold compared with Magmaris (8.0% vs. 5.3%, p=0.009). Magmaris also had significantly less CD14 positive monocyte deposition and a trend towards less PM-1 positive neutrophil compared with the 316L equivalent stent. CONCLUSIONS: Magmaris has less thrombogenicity and inflammatory cell deposition compared with the equivalent 316L stainless steel (in geometry and design) stent in a porcine arteriovenous shunt model. These data suggest that resorbable magnesium scaffolds may have inherent properties that reduce adhesion of platelets and inflammatory cells.


Assuntos
Fístula Arteriovenosa , Trombose , Animais , Magnésio , Aço Inoxidável , Stents , Suínos
6.
EuroIntervention ; 14(9): e1040-e1048, 2018 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-29469029

RESUMO

AIMS: Because vascular restoration therapy using bioresorbable vascular scaffolds (BRS) remains an appealing concept to restore vasoreactivity, an understanding of biodegradation remains paramount during preclinical testing. We therefore aimed to investigate the qualitative and temporal course of degradation of magnesium alloy-based bioresorbable vascular scaffolds in juvenile swine. METHODS AND RESULTS: Qualitative characterisation of biodegradation was performed in 41 DREAMS 1G up to three years, while degradation kinetics were acquired in 54 DREAMS 2G implanted into porcine coronary arteries for 28, 90 and 180 days, one and two years. Assessment of end product composition was achieved in DREAMS 2G at 180 days. Myocardium was examined, while an OCT attenuation score was derived at strut level from 180 days to two years in DREAMS 2G. Degradation of DREAMS entails two corrosive phases. At one year, 94.8% of the magnesium was bioabsorbed in DREAMS 2G and, at two years, magnesium was completely replaced by amorphous calcium phosphate. Von Kossa staining revealed variable peri-strut mineralisation at all time points and only small focal myocardial emboli observed in one animal in the 180 days cohort. Strut discontinuity density was low at 28 days (0.5±0.57 per mm) and increased to a density above 7.5 per mm up to one year. OCT attenuation score correlated well with strut-based degradation analysis up to two years. CONCLUSIONS: While the current set of data supports vascular safety, clinical trials are warranted to prove the concept of vascular restoration following DREAMS implantation.


Assuntos
Implantes Absorvíveis , Animais , Fármacos Cardiovasculares , Vasos Coronários , Stents Farmacológicos , Cinética , Magnésio , Suínos , Alicerces Teciduais , Tomografia de Coerência Óptica
7.
Circ Cardiovasc Interv ; 10(8)2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28801538

RESUMO

BACKGROUND: A comparison in acute thrombogenicity between the Magmaris sirolimus-eluting bioabsorbable magnesium scaffold and the Absorb bioresorbable vascular scaffold has not been performed. This study assessed acute thrombogenicity of Magmaris compared with Absorb and the Orsiro hybrid drug-eluting stent in a porcine arteriovenous shunt model. METHODS AND RESULTS: An ex vivo porcine carotid jugular arteriovenous shunt was established and connected to SYLGARD tubing containing the Magmaris, Absorb, and Orsiro scaffolds/stents and allowed to run in the shunt for a maximum of 1 hour. Twelve shunts (2 shunt runs per pig) were run comparing the 3 scaffolds in alternating order. Nested generalized linear mixed models were used to compare variables between scaffold groups while adjusting for variability between shunt runs. Confocal fluorescent microscopy costaining CD61/CD42b demonstrated that both Magmaris (3.0%) and Orsiro (4.6%) had less platelet coverage of the total scaffold compared with Absorb (21.8%). Scanning electron microscopy demonstrated significantly less thrombus deposition to Magmaris as a percentage of the total scaffold compared with Absorb (5.0% versus 16.1%, P=0.02). Magmaris had significantly less PM-1-positive neutrophil and CD14-positive monocyte adherence compared with both Orsiro and Absorb. Orsiro had significantly less monocyte deposition compared with Absorb. CONCLUSIONS: Despite a similar scaffold strut thickness, the Magmaris sirolimus-eluting bioabsorbable magnesium scaffold was significantly less thrombogenic compared with the Absorb bioresorbable vascular scaffold in an ex vivo porcine arteriovenous shunt model. Further studies are needed to determine whether the reduced thrombogenicity of Magmaris will result in reductions in major cardiovascular events.


Assuntos
Stents Farmacológicos/efeitos adversos , Magnésio , Trombose/etiologia , Alicerces Teciduais/efeitos adversos , Animais , Adesão Celular , Microscopia Eletrônica de Varredura , Suínos , Trombose/patologia
8.
EuroIntervention ; 13(4): 440-449, 2017 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-28262623

RESUMO

AIMS: The second-generation drug-eluting absorbable magnesium scaffold Magmaris, recently introduced for the treatment of obstructive coronary atherosclerotic lesions, suggests a good safety profile, but preclinical assessment is important for predicting clinical performance. The aim of the present study was to assess subacute and long-term safety as well as pharmacokinetic properties of the Magmaris compared with a current-generation metallic DES and an approved BRS in porcine and rabbit animal models. METHODS AND RESULTS: Ninety Magmaris scaffolds were implanted into non-diseased porcine and rabbit models. A bioresorbable vascular scaffold (Absorb) and a permanent drug-eluting stent (XIENCE Xpedition) served as controls. Scanning electron microscopy showed increased endothelialisation and decreased thrombus formation at three and 28 days in the Magmaris group compared with the Absorb group. In the XIENCE group, inflammation exceeded the level in the Magmaris group at 365 and 730 days. Neointimal growth was greater in the Magmaris group than in the XIENCE group. Late lumen loss decreased over time in both groups. Optical coherence tomography (OCT) showed stable luminal dimensions in both the Magmaris and XIENCE groups. Pharmacokinetic studies demonstrated a retarded elution profile in the Magmaris group with 69.4% of sirolimus released at 90 days. CONCLUSIONS: Preclinical results suggest that the Magmaris has a favourable safety profile with advanced healing relative to benchmark, low acute thrombogenicity, and absence of excessive lumen loss up to two years. These results support clinical application of Magmaris for human use.


Assuntos
Implantes Absorvíveis , Estenose Coronária/terapia , Stents Farmacológicos , Desenho de Prótese , Sirolimo/uso terapêutico , Animais , Fármacos Cardiovasculares/uso terapêutico , Vasos Coronários/patologia , Vasos Coronários/cirurgia , Everolimo/uso terapêutico , Magnésio , Intervenção Coronária Percutânea/métodos , Coelhos , Suínos , Resultado do Tratamento
9.
J Clin Invest ; 120(12): 4342-52, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21041950

RESUMO

The circulating, adipocyte-secreted hormone adiponectin (APN) exerts protective effects on the heart under stress conditions. The receptors binding APN to cardiac tissue, however, have remained elusive. Here, we report that the glycosyl phosphatidylinositol­anchored cell surface glycoprotein T-cadherin (encoded by Cdh13) protects against cardiac stress through its association with APN in mice. We observed extensive colocalization of T-cadherin and APN on cardiomyocytes in vivo. In T-cadherin-deficient mice, APN failed to associate with cardiac tissue, and its levels dramatically increased in the circulation. Pressure overload stress resulted in exacerbated cardiac hypertrophy in T-cadherin-null mice and paralleled corresponding defects in mice lacking APN. During ischemia-reperfusion injury, the absence of T-cadherin increased infarct size similar to that in APN-null mice. Myocardial AMPK is a major downstream protective signaling target of APN. In both cardiac hypertrophy and ischemia-reperfusion models, T-cadherin was necessary for APN-dependent AMPK phosphorylation. In APN-null mice, recombinant adenovirus-expressed APN reduced exaggerated hypertrophy and infarct size and restored AMPK phosphorylation as previously reported. In contrast, rescue was ineffective in mice lacking T-cadherin in addition to APN. These data suggest that T-cadherin protects from stress-induced pathological cardiac remodeling by binding APN and activating its cardioprotective functions.


Assuntos
Caderinas/fisiologia , Cardiopatias/prevenção & controle , Proteínas Quinases Ativadas por AMP/metabolismo , Adiponectina/deficiência , Adiponectina/genética , Adiponectina/fisiologia , Animais , Sequência de Bases , Caderinas/deficiência , Caderinas/genética , Cardiomegalia/patologia , Cardiomegalia/fisiopatologia , Cardiomegalia/prevenção & controle , Cardiotônicos/metabolismo , Primers do DNA/genética , Cardiopatias/patologia , Cardiopatias/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Transdução de Sinais , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA