Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Forensic Sci Int Genet ; 14: 174-81, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25450789

RESUMO

The genotypes of 36 Y-chromosomal short tandem repeat (Y-STR) marker units were analysed in a Dutch population sample of 2085 males. Profiling results were compared for several partially overlapping kits, i.e. PowerPlex Y, Yfiler, PowerPlex Y23, and two in-house designed multiplexes with rapidly mutating Y-STRs. Nineteen Y-STR marker units, of which two are rapidly mutating, reside in at least two of these multiplexes, and for these markers concordance testing was performed. Two samples showed discordant genotyping results and the probable causative base change was revealed by Sanger sequencing. In addition, we encountered concordant, but aberrant genotyping results including one allele with low peak height and several null alleles. For 12 samples, this involved a null allele in two adjacent loci suggesting a large and recurrent deletion as the samples represent three distinct haplogroups. For each marker unit, the allele counts and frequencies are presented, as are the haplotype counts and haplotype diversities for several combinations of markers.


Assuntos
Cromossomos Humanos Y , Marcadores Genéticos , Repetições de Microssatélites/genética , Eletroforese Capilar , Humanos , Masculino , Países Baixos , Linhagem , Reação em Cadeia da Polimerase
2.
Forensic Sci Int Genet ; 10: 55-63, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24680126

RESUMO

Regularly, STR results obtained with different PCR amplification kits are compared, for instance with old cases, when revisiting cold cases or when addressing cross-border crimes. It is known that differences in primer design for the same loci in different kits may give rise to null alleles or shifted alleles. In this study, the genotyping results of 2085 Dutch male samples were compared for six autosomal STR kits (Promega's PowerPlex(®) 16, ESX-16 and ESI-17 Systems, Qiagen's Investigator(®) ESSplex Kit and Applied Biosystems' AmpFlSTR(®) Identifiler and NGM PCR Amplification Kits). A total of 19 discordant autosomal genotyping results were obtained that were examined by sequence analysis using Roche-454 next generation sequencing and/or Sanger sequencing. A further 25 discordances were found and sequenced for the Amelogenin locus. The 24 samples showing the same primer binding site mutation at the Amelogenin locus were subjected to X-STR analysis in order to assess whether they could share a common origin, which appeared not to be the case. Based on the sequencing results, we set the final genotypes and determined the allele frequencies of 23 autosomal STRs for the Dutch reference database.


Assuntos
Genética Populacional , Repetições de Microssatélites , Frequência do Gene , Humanos , Países Baixos , Reação em Cadeia da Polimerase
3.
PLoS One ; 9(3): e91534, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24614536

RESUMO

The greater Himalayan region demarcates two of the most prominent linguistic phyla in Asia: Tibeto-Burman and Indo-European. Previous genetic surveys, mainly using Y-chromosome polymorphisms and/or mitochondrial DNA polymorphisms suggested a substantially reduced geneflow between populations belonging to these two phyla. These studies, however, have mainly focussed on populations residing far to the north and/or south of this mountain range, and have not been able to study geneflow patterns within the greater Himalayan region itself. We now report a detailed, linguistically informed, genetic survey of Tibeto-Burman and Indo-European speakers from the Himalayan countries Nepal and Bhutan based on autosomal microsatellite markers and compare these populations with surrounding regions. The genetic differentiation between populations within the Himalayas seems to be much higher than between populations in the neighbouring countries. We also observe a remarkable genetic differentiation between the Tibeto-Burman speaking populations on the one hand and Indo-European speaking populations on the other, suggesting that language and geography have played an equally large role in defining the genetic composition of present-day populations within the Himalayas.


Assuntos
Cromossomos Humanos/genética , Genética Populacional , Linguística , Repetições de Microssatélites/genética , Ásia , Fluxo Gênico , Técnicas de Genotipagem , Humanos
4.
Forensic Sci Int Genet ; 6(2): 208-18, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21612995

RESUMO

The panels of 9-17 Y-chromosomal short tandem repeats (Y-STRs) currently used in forensic genetics have adequate resolution of different paternal lineages in many human populations, but have lower abilities to separate paternal lineages in populations expressing low Y-chromosome diversity. Moreover, current Y-STR sets usually fail to differentiate between related males who belong to the same paternal lineage and, as a consequence, conclusions cannot be drawn on the individual level as is desirable for forensic interpretations. Recently, we identified a new panel of rapidly mutating (RM) Y-STRs, composed of 13 markers with mutation rates above 1 × 10(-2), whereas most Y-STRs, including all currently used in forensics, have mutation rates in the order of 1 × 10(-3) or lower. In the present study, we demonstrate in 604 unrelated males sampled from 51 worldwide populations (HGDP-CEPH) that the RM Y-STRs provide substantially higher haplotype diversity and haplotype discrimination capacity (with only 3 haplotypes shared between 8 of the 604 worldwide males), than obtained with the largest set of 17 currently used Y-STRs (Yfiler) in the same samples (33 haplotypes shared between 85 males). Hence, RM Y-STRs yield high-resolution paternal lineage differentiation and provide a considerable improvement compared to Yfiler. We also find in this worldwide dataset substantially less genetic population substructure within and between geographic regions with RM Y-STRs than with Yfiler Y-STRs. Furthermore, with the present study we provide enhanced data evidence that the RM Y-STR panel is extremely successful in differentiating between closely and distantly related males. Among 305 male relatives, paternally connected by 1-20 meiotic transfers in 127 independent pedigrees, we show that 66% were separated by mutation events with the RM Y-STR panel whereas only 15% were with Yfiler; hence, RM Y-STRs provide a statistically significant 4.4-fold increase of average male relative differentiation relative to Yfiler. The RM Y-STR panel is powerful enough to separate closely related males; nearly 50% of the father and sons, and 60% of brothers could be distinguished with RM Y-STRs, whereas only 7.7% and 8%, respectively, with Yfiler. Thus, by introducing RM Y-STRs to the forensic genetic community we provide important solutions to several of the current limitations of Y chromosome analysis in forensic genetics.


Assuntos
Cromossomos Humanos Y/genética , Ligação Genética , Repetições de Microssatélites/genética , Mutação/genética , Alelos , Impressões Digitais de DNA , Genótipo , Haplótipos , Humanos , Masculino , Modelos Genéticos , Reação em Cadeia da Polimerase Multiplex , Linhagem
5.
Forensic Sci Int Genet ; 5(5): 464-71, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20947461

RESUMO

The IrisPlex system consists of a highly sensitive multiplex genotyping assay together with a statistical prediction model, providing users with the ability to predict blue and brown human eye colour from DNA samples with over 90% precision. This 'DNA intelligence' system is expected to aid police investigations by providing phenotypic information on unknown individuals when conventional DNA profiling is not informative. Falling within the new area of forensic DNA phenotyping, this paper describes the developmental validation of the IrisPlex assay following the Scientific Working Group on DNA Analysis Methods (SWGDAM) guidelines for the application of DNA-based eye colour prediction to forensic casework. The IrisPlex assay produces complete SNP genotypes with only 31pg of DNA, approximately six human diploid cell equivalents, and is therefore more sensitive than commercial STR kits currently used in forensics. Species testing revealed human and primate specificity for a complete SNP profile. The assay is capable of producing accurate results from simulated casework samples such as blood, semen, saliva, hair, and trace DNA samples, including extremely low quantity samples. Due to its design, it can also produce full profiles with highly degraded samples often found in forensic casework. Concordance testing between three independent laboratories displayed reproducible results of consistent levels on varying types of simulated casework samples. With such high levels of sensitivity, specificity, consistency and reliability, this genotyping assay, as a core part of the IrisPlex system, operates in accordance with SWGDAM guidelines. Furthermore, as we demonstrated previously, the IrisPlex eye colour prediction system provides reliable results without the need for knowledge on the bio-geographic ancestry of the sample donor. Hence, the IrisPlex system, with its model-based prediction probability estimation of blue and brown human eye colour, represents a useful tool for immediate application in accredited forensic laboratories, to be used for forensic intelligence in tracing unknown individuals from crime scene samples.


Assuntos
Cor de Olho/genética , Genética Forense , DNA/genética , Humanos , Polimorfismo de Nucleotídeo Único , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...