Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 214(Pt 2): 113892, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35863450

RESUMO

Identification of critical source areas (CSAs) for non-point source (NPS) pollution is of great significance for environment governance and prevention. However, the CSAs are generally characterized as great spatial dispersion, and spatially heterogeneous precipitation has a great influence on the spatial distribution of nutrient yields. Therefore, we identify the CSAs for nutrient yields in an agricultural watershed of Northeast China at hydrological response units (HRUs) scale based on the Soil and Water Assessment Tool (SWAT), assess the impacts of spatially heterogeneity of precipitation on the identification of the CSAs, analyze the sensitivity of nutrient yields to precipitation by scenarios analysis method, and further identify priority management areas (PMAs) that have poor ability to retain nutrients. The results showed that the CSAs for nutrient yields identified by uniform precipitation showed greater fluctuation range and coverage area than actual precipitation; the major prevention areas of total nitrogen (TN) yield were mainly distributed in regions nearby main stem of lower reaches, while that of total phosphorus (TP) yield were mostly located in urban area nearby outlet of the watershed; the identification of the PMAs significantly decreased the CSAs for TN yield, whereas that for TP yield was no significant difference with the CSAs. This study could provide scientific guidance for the NPS pollution governance and prevention.


Assuntos
Poluição Difusa , Poluentes Químicos da Água , Agricultura/métodos , China , Monitoramento Ambiental/métodos , Nitrogênio/análise , Poluição Difusa/análise , Fósforo/análise , Rios , Poluentes Químicos da Água/análise
2.
Environ Res ; 212(Pt D): 113474, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35594960

RESUMO

Healthy aquatic ecosystems can offer basic ecological services for the sustainable development of humans and society. Water quality greatly influences the macroinvertebrate community in aquatic ecosystems and can alter the aquatic ecosystem's health status. However, the quantitative relationship between macroinvertebrate community and water quality factors in rivers remains unclear, particularly in urban rivers, which are strongly affected by human activities. Therefore, a new framework for the quantitative analysis between macroinvertebrate community and key water quality driving factors was developed in the study, meanwhile, the aquatic ecosystem health conditions were evaluated and validated by different methods. The framework was applied to a typical urban river, the North Canal River, which is regarded as the "mother river" of Beijing. Combined with the redundancy analysis (RDA) and the threshold indicator taxa analysis (TITAN), the water quality driving factors and their indicator species were identified and the corresponding response threshold was determined. Based on the benthic index of biotic integrity (B-IBI), the multi-metric rapid bioassessment method, and the biological monitoring working party (BMWP) score, the aquatic ecosystem health condition in the basin was comprehensively evaluated. The results show that fluoride, biochemical oxygen demand, ammonia-nitrogen and total phosphorus were the key water quality driving factors influencing the community structure of macroinvertebrates. Four indicator species of ammonia-nitrogen were identified by the TITAN method with a threshold range of 1.09-6.94 mg L-1, and three indicator species of total phosphorus were identified with a threshold range of 0.48-1.27 mg L-1. According to the results of the aquatic ecosystem health assessment, the river ecosystem was generally unhealthy and the upstream was better than downstream; the health condition in the mountainous areas of Changping district was the best, while that in Chaoyang district and the central city area was the worst. The framework could provide a strong basis for ecological restoration and pollution control of the urban rivers and become an important tool for the rehabilitation of aquatic ecosystems.


Assuntos
Ecossistema , Qualidade da Água , Amônia , Animais , Pequim , China , Monitoramento Ambiental/métodos , Humanos , Invertebrados , Nitrogênio , Fósforo
3.
Huan Jing Ke Xue ; 43(1): 247-255, 2022 Jan 08.
Artigo em Chinês | MEDLINE | ID: mdl-34989509

RESUMO

Macrobenthos can reflect the cumulative effect of various ecological threats on the water environment and are closely related to the health of river ecosystems. In this study, taking the North Canal River basin, a typical basin in Beijing, as an example, ecological data from 34 stations were investigated in the summer of 2015. Characteristics of the macrobenthos communities were analyzed, and driving environmental factors were identified using typical correspondence analysis. Thresholds and response species of those driving environmental factors were conducted using the thresholds indicator taxa analysis (TITAN). In this study, the health status of the river ecosystem was evaluated by the multi-metrics method and benthic index of biotic integrity (B-IBI). The benthic community was dominated by pollution-tolerant aquatic insects and mollusks, with a low-level Shannon-wiener diversity index between 0-1.01; fluoride, biochemical oxygen demand, ammonia-nitrogen, and total phosphorus were driving environmental factors influencing the community structure of macrobenthos. Indicator species of ammonia-nitrogen were identified by the TITAN in the North Canal River basin with a threshold range of 1.09-6.94 mg·L-1; three indicator species of total phosphorus were identified with a threshold range of 0.48-1.27 mg·L-1, which were all positive response species. According to the health assessment, the river ecosystem in the North Canal River basin was generally unhealthy, and the upstream ecosystem was better than that downstream; the health conditions in the mountainous areas of Changping district were the best, whereas those in Chaoyang and central city districts were the worst. This study can provide a basis for ecological restoration and pollution control of rivers and also provide a reference for the water ecological civilization construction in other cities.


Assuntos
Ecossistema , Água , Pequim , China , Monitoramento Ambiental , Rios
4.
Huan Jing Ke Xue ; 41(10): 4564-4571, 2020 Oct 08.
Artigo em Chinês | MEDLINE | ID: mdl-33124388

RESUMO

Aiming at non-point sources pollution in the agricultural areas with large topographic fluctuations and spatial differences in precipitation, a SWAT model was used to evaluate the spatial variations in the critical source areas (CSAs) of total nitrogen (TN) and total phosphorus (TP) under two precipitation scenarios, i.e., heterogeneous precipitation and uniform precipitation. A change in the CSAs identified based on the two precipitation scenarios during the study period were statistically calculated, and the relationship between the CSAs and precipitation variables was discussed. The study results showed that when the total precipitation was the same, the variation tendency of the identified CSAs for TN and TP under the two precipitation scenarios were similar, and very close for a few years. According to the results of the pair t test, the CSAs of TP were not affected by the spatial variation of precipitation, while the change in CSAs for TN was more significant under different precipitation scenarios, which is likely due to the difference in the physical properties of nitrogen and phosphorus. The correlation analysis between the CSAs of TN and TP with precipitation variables showed that the variation in the CSAs of TP was positively correlated with the precipitation variables in the same year, while the variation in the CSAs of TN was strongly related to the precipitation variables of the previous year. The results obtained in this study are of great significance for further exploring the impact of uncertainty of precipitation, which is an important driving factor, on the CSAs of non-point sources pollution and the governance of agricultural non-point sources pollution.


Assuntos
Poluição Difusa , Poluentes Químicos da Água , China , Monitoramento Ambiental , Nitrogênio/análise , Fósforo/análise , Rios , Poluentes Químicos da Água/análise
5.
Sci Total Environ ; 544: 238-50, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26657370

RESUMO

The changes in runoff and sediment load in the Loess Plateau of China have received considerable attention owing to their dramatic decline during recent decades. In this paper, the impacts of land-use and climate changes on water and sediment yields in the Huangfuchuan River basin (HFCRB) of the Loess Plateau are investigated by combined usage of statistical tests, hydrological modeling, and land-use maps. The temporal trends and abrupt changes in runoff and sediment loads during 1954-2012 are detected by using non-parametric Mann-Kendall and Pettitt tests. The land-use changes between 1980 and 2005 are determined by using transition matrix analysis, and the effects of land-use and climate changes on water and sediment yields are assessed by using the Soil and Water Assessment Tool (SWAT) hydrological model and four scenarios, respectively. The results show significant decreasing trends in both annual runoff and sediment loads, whereas slightly decreasing and significantly increasing trends are detected for annual precipitation and air temperature, respectively. 1984 is identified as the dividing year of the study period. The land-use changes between 1980 and 2005 show significant effects of the Grain for Green Project in China. Both land-use change and climate change have greater impact on the reduction of sediment yield than that of water. Water and sediment yields in the upstream region show more significant decreases than those in the downstream region under different effects. The results obtained in this study can provide useful information for water resource planning and management as well as soil and water conservation in the Loess Plateau region.

6.
Environ Monit Assess ; 186(6): 3701-16, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24535402

RESUMO

In the Wei River basin, the ecosystem is gradually deteriorating due to the rapid growth of the population and the development of economies. It is thus important to assess the ecosystem health and take measures to restore the damaged ecosystem. In this study, an index of biotic integrity (IBI) for fish was developed to aid the conservation of the ecosystem based on a calibration data set. An index of water and habitat quality (IWHQ) was calculated based on environmental variables and habitat quality (QHEI) to identify the environmental degradation in the studied sites. The least degraded sites (IWHQ ≤ 2; W1, W5, W10, W12, W13, W14, and W16) were chosen as the reference sites. Six metrics that are sensitive to environmental degradation were utilized to differentiate the reference and the impaired sites using statistical methods. These metrics included the number of species (P1), the total biomass (P2), the number of Cobitidae species (P8), the proportion of species in the middle and low tiers (P10), the proportion of individuals that were classified as sensitive species (P25), and number of individuals in the sample (P39). A continuous scoring method was used to score the six metrics, and four classes were defined to characterize the ecosystem health of the Wei River basin. The fact that the overall IBI scores were negatively correlated with the index of environmental quality (IWHQ) based on the validation data set indicated that the index should be useful for biomonitoring and the conservation of biodiversity. According to the results, more than half of the sites were classified as poor or very poor. The ecosystem health in the Wei River was better than that in the Jing River and the Beiluo River, and this study will be a great reference for water resources management and ecosystem restoration in the Wei River basin.


Assuntos
Ecossistema , Monitoramento Ambiental/métodos , Peixes/classificação , Rios/química , Animais , China , Peixes/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...