Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell ; 36(5): 1844-1867, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38146915

RESUMO

Hypothetical chloroplast open reading frames (ycfs) are putative genes in the plastid genomes of photosynthetic eukaryotes. Many ycfs are also conserved in the genomes of cyanobacteria, the presumptive ancestors of present-day chloroplasts. The functions of many ycfs are still unknown. Here, we generated knock-out mutants for ycf51 (sll1702) in the cyanobacterium Synechocystis sp. PCC 6803. The mutants showed reduced photoautotrophic growth due to impaired electron transport between photosystem II (PSII) and PSI. This phenotype results from greatly reduced PSI content in the ycf51 mutant. The ycf51 disruption had little effect on the transcription of genes encoding photosynthetic complex components and the stabilization of the PSI complex. In vitro and in vivo analyses demonstrated that Ycf51 cooperates with PSI assembly factor Ycf3 to mediate PSI assembly. Furthermore, Ycf51 interacts with the PSI subunit PsaC. Together with its specific localization in the thylakoid membrane and the stromal exposure of its hydrophilic region, our data suggest that Ycf51 is involved in PSI complex assembly. Ycf51 is conserved in all sequenced cyanobacteria, including the earliest branching cyanobacteria of the Gloeobacter genus, and is also present in the plastid genomes of glaucophytes. However, Ycf51 has been lost from other photosynthetic eukaryotic lineages. Thus, Ycf51 is a PSI assembly factor that has been functionally replaced during the evolution of oxygenic photosynthetic eukaryotes.


Assuntos
Proteínas de Bactérias , Fases de Leitura Aberta , Complexo de Proteína do Fotossistema I , Synechocystis , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema I/genética , Synechocystis/genética , Synechocystis/metabolismo , Fases de Leitura Aberta/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Cloroplastos/metabolismo , Fotossíntese/genética , Tilacoides/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Complexo de Proteína do Fotossistema II/genética , Mutação
2.
iScience ; 25(7): 104611, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35789835

RESUMO

Harmful Microcystis blooms (HMBs) and microcystins (MCs) that are produced by Microcystis seriously threaten water ecosystems and human health. This study demonstrates an eco-friendly strategy for simultaneous removal of MCs and HMBs by adopting unique hyperoxic graphene oxides (HGOs) as carrier and pure microcystinase A (PMlrA) as connecting bridge to form stable HGOs@MlrA composite. After oxidation, HGOs yield inherent structural strain effects for boosting the immobilization of MlrA by material characterization and density functional theory calculations. HGO5 exhibits higher loading capacities for crude MlrA (1,559 mg·g-1) and pure MlrA (1,659 mg·g-1). Moreover, the performances of HGO5@MlrA composite, including the capability of removing MCs and HMBs, the ecological and human safety compared to MlrA or HGO5 treatment alone, have been studied. These results indicate that HGO5 can be used as a promising candidate material to effectively improve the application potential of MlrA in the simultaneous removal of MCs and HMBs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...