Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 275(Pt 1): 133621, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38960248

RESUMO

Plant fiber-reinforced polylactic acid (PLA) composites are extensively utilized in eco-friendly packaging, sports equipment, and various other applications due to their environmental benefits and cost-effectiveness. However, PLA suffers from brittleness and poor toughness, which restricts its use in scenarios demanding high toughness. To expand the application range of plant fiber-reinforced PLA-based composites and enhance their poor toughness, this study employed a two-step process involving wheat straw fiber (WF) to improve the interfacial compatibility between WF and PLA. Additionally, four elastomeric materials-poly (butylene adipate-co-terephthalate) (PBAT), poly (butylene succinate) (PBS), polycaprolactone (PCL), and polyhydroxyalkanoate (PHA)-were incorporated to achieve a mutual reactive interface enhancement and elastomeric toughening. The results demonstrated that Fe3+/TsWF/PLA/PBS exhibited a tensile strength, elongation at break, and impact strength of 34.01 MPa, 14.23 %, and 16.2 kJ/m2, respectively. These values represented a 2.4 %, 86.7 %, and 119 % increase compared to the unmodified composites. Scanning electron microscopy analysis revealed no fiber exposure in the cross-section, indicating excellent interfacial compatibility. Furthermore, X-ray diffraction and differential scanning calorimetry tests confirmed improvements in the crystalline properties of the composites. This work introduces a novel approach for preparing fiber-reinforced PLA-based composites with exceptional toughness and strength.

2.
J Hazard Mater ; 474: 134758, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38820756

RESUMO

To remove iodine ion (I-) from wastewater, a novel hydrogel, the fluorescent cellulose nanofibrils-based hydrogel (FCNH), was synthesized to enable both detection and adsorption of I-. The FCNH comprised cellulose nanofibrils (CNs), silver nanoclusters (AgNCs), and MIL-125-NH2. It exhibited an excellent adsorption capacity for I-, with a maximum adsorption capacity of 373.7 mg/g, fitting both the Langmuir and pseudo-second-order models. Additionally, FCNH displayed excellent regeneration properties, retaining 88.0 % of its initial adsorption capacity after six adsorption-desorption cycles. Functioning as a fluorescent sensor, the synthesized FCNH enabled the detection of I- through dynamic quenching, with linear ranges of 5 to 200 mg/L and 0.2 to 1.0 µg/L, and a determination limit of 0.11 µg/L. Analysis of the adsorption and detection mechanisms revealed that FCNH's outstanding performance arose from its 3D porous structure comprising CNs, AgNCs, and MIL-125-NH2. Economic analysis indicated that FCNH was inexpensive compared to commercially available activated carbon. Thus, FCNH demonstrated significant potential as an economical and reusable adsorbent for iodine ion removal.

3.
Int J Biol Macromol ; 221: 773-783, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36096256

RESUMO

Polylactic acid-based (PLA) composites are widely used in biomedicine, electrical components, food packaging and other fields, but their unsatisfactory mechanical properties such as high brittleness and poor toughness, cause problems in functional applications. This work developed a green and environmentally friendly strategy to improve PLA mechanical properties. Flexible polybutylene succinate (PBS) and alkaline hydrogen peroxide (AHP) treated straw fibers (SF) synergistically modified PLA. AHP is decomposed into a large amount of HOO-, which oxidizes the hydroxyl groups in SF to carboxyl groups to obtain oxidized straw fiber (OSF), which reacts with PLA in the molten state to form new ester bonds. The tensile strength of the OSF/PLA composite is 41.78 MPa, 38 % higher than the SF/PLA composite. The impact toughness of OSF/PBS/PLA composite is 14.47 KJ/m2 increased by 54 % after the adding PBS, while the tensile strength was also better than the control group. The synergistic action of PLA and PBS in OSF is attributed to the formation of new chemical bonds, efficient crystallization, and compatible interface. This study provides a new strategy to produce fiber-reinforced PLA composites with good toughness. It takes positive significance for developing degradable plastics with good performance and controllable cost.


Assuntos
Elastômeros , Poliésteres , Poliésteres/química , Polímeros/química
4.
ACS Nano ; 16(5): 8116-8127, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35561280

RESUMO

A common method for reducing carbon emissions and the load-bearing pressure of buildings, and while also achieving improved energy conservation is to prepare porous magnesium-based lightweight composites to reduce waste and environmental hazards. However, due to internal stress, the pores of traditional lightweight composites crack easily and collapse, resulting in composites that are brittle with poor water resistance. These materials cannot achieve both low density and high strength, which limits their application in advanced functional materials. Thus, learned from nature, inspired by swallow's nest, a solution has been proposed, which is a simple and fast chemical arrangement and assembly method. Using bamboo scraps as the supporting framework and methylcellulose (MC) molecular chains as the templates, 5-phase crystals are grown and arranged on the MC. These crystals are arranged on the bamboo scraps by chemical means with MC acting as a bridge. At the same time, using the high viscosity and flexibility of the vinyl acetate/ethylene (VAE) copolymer emulsion and the formation of magnesium acetate chelate from VAE and hydration products, crystals and bamboo scraps can be assembled. Through these organic-inorganic copolymers, an intercalated and integrated biomimetic swallow nest structure is formed. The biomimetic swallow nest structure composites (BSNSC) imitated the formation process of a natural swallow nest. It is a lightweight material with a thick wall, low connectivity rate, and regular shape. Its density is 0.42 g/cm3, which is still in the density class of ultralight inorganic foam materials, and its compressive strength reaches 6.5 MPa, three times that of ordinary composites. The structure has a strength-to-weight ratio 3.5 times that of ordinary composites and a thermal conductivity much lower than of other thermal insulation materials. In the future, this type of lightweight composites with high strength, high heat insulation, and low density not only functions as a good energy-saving material for buildings but also a good thermal insulation material in the aerospace field.


Assuntos
Biomimética , Condutividade Térmica
5.
Int J Biol Macromol ; 182: 2108-2116, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34087299

RESUMO

To improve the performance of wheat straw/polylactic acid (WS/PLA) composites, four different silane coupling agents were used for constructing compatible interfaces and then examined by scanning electron microscopy, Fourier transform-infrared spectroscopy, X-ray diffractometry and thermogravimetric analysis. The blending and tensile strengths of silane-modified composites were effectively enhanced, with KH-570-modified composite exhibiting the best blending and tensile strengths. Water resistance analysis of silane-modified composites was reduced and contact angles larger, indicating that water resistance performance of this composite had been effectively improved. The KH-570-modified composite exhibited the best water resistance performance. Strain scanning showed that, in the linear viscoelastic region, the storage modulus (G') of modified composite was larger than that of unmodified composites. Frequency scanning showed that the G' and complex viscosity (η*) of modified composites were greater than those of unmodified composites. From strain analysis and frequency scanning, the modified performance of the silane agent was observed to effectively improve composite interfacial compatibility, with KH-570-modified composite exhibiting the best effect. XRD analysis showed that silane coupling agent modification improved the crystallinity of composites with the improvement of KH-570 the best. And the thermal stability of silane-modified composites was improved and the thermal stability of KH-570-modified composite the best.


Assuntos
Poliésteres/química , Silanos/química , Triticum/química , Reologia , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Resistência à Tração , Termogravimetria , Água/química , Difração de Raios X
6.
Int J Biol Macromol ; 157: 177-186, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32344087

RESUMO

To improve the properties of polylactic acid-grafted-bamboo fiber/polylactic acid (PLA-g-BF/PLA) composite, a compatible interface was constructed by adding nano-silica (nano-SiO2). The results showed that, with increased nano-SiO2 mass ratio, the composites' mechanical strength and water resistance were significantly improved. The composite with a 1.5% nano-SiO2 mass ratio exhibited the best mechanical properties and water resistance. Strain scanning results showed that the strain value at which the storage module (G') of the composite began to decrease was the largest with 1.5% nano-SiO2 and the G' and complex viscosity (η*) of the composite also reached the best state at this point. The interfacial compatibility between PLA-g-BF and PLA was also confirmed to be the best at this mass ratio. SEM and TEM analyses indicated that, when the mass ratio of nano-SiO2 was 1.5%, nanoparticles were uniformly dispersed in the composite and PLA-g-BF and PLA in a state of integration. The addition of nano-SiO2 was beneficial for the crystallization and nucleation of PLA, and composite crystallinity with 1.5% nano-SiO2 reached the maximum value. With increased interfacial compatibility and crystallinity of the composite, the thermal stability was also best when the mass ratio of nano-SiO2 was 1.5%.


Assuntos
Nanoestruturas/química , Poliésteres/química , Dióxido de Silício/química , Têxteis , Temperatura , Viscosidade , Água/química
7.
Int J Biol Macromol ; 156: 1316-1322, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31760010

RESUMO

To improve the hydrophobicity and thermoplastic processability of starch, lactic acid esterified starch (LA-e-starch) was prepared by in-situ solid phase esterification with corn starch as the raw material and LA as the esterifying agent. Fourier transform infrared spectroscopy confirmed that the esterification reaction was successful. The optimal esterification efficiency of LA-e-starch was obtained when the LA proportion was 20% by mass, catalyst ratio at 3%, reaction temperature 80 °C and reaction time 2.5 h. LA-e-starch was characterized by scanning electron microscopy (SEM), contact angle (CA) analysis, X-ray diffractometry (XRD), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA) as well as its water absorption rate evaluated. Results showed that in-situ solid phase esterification mainly occurred on starch granule surfaces and did not destroy the starch granularity. LA-e-starch surfaces were covered with a layer of polylactic acid resin, which caused starch granules to stick together. The initial contact angle of LA-e-starch was clearly larger than that of native starch and the water absorption rate lower than native starch in a 168 h test time, which showed that esterification effectively improved the hydrophobicity of starch. This esterification destroyed the crystalline structure of starch to some extent, resulting in a crystallinity reduction to 25.16%. In addition, the gelatinization temperature and enthalpy were lower than those of native starch. XRD and DSC analyses indicated that esterification modification increased starch thermoplasticity. Also, LA-e-starch exhibited better thermal stability than native starch, from which it was inferred that this application of esterification could improve the thermoplastic processability of starch modify the interfacial compatibility between starch and polymer resins.


Assuntos
Ácido Láctico/química , Amido/química , Esterificação , Interações Hidrofóbicas e Hidrofílicas , Propriedades de Superfície
8.
Int J Biol Macromol ; 141: 325-332, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31491516

RESUMO

The in-situ reactive interfacial compatibilization and properties of polylactic acid-g-bamboo fiber (PLA-g-BF)/polylactic acid (PLA) composites, produced by blending with a three-component plasticizer, glycerol/formamide/tributyl citrate, were investigated. The PLA-g-BF/PLA composites were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), differential scanning calorimeter (DSC), thermal gravimetric analyzer (TGA) and rotational rheometer, and the bending, tensile, and water resistance properties were also tested. The bending strength and elongation at break of PLA-g-BF/PLA composite reached 35.6 MPa and 5.59%, which increased by 19.3% and 30.1% relative to the ungrafted composites. The initial contact angle of the PLA-g-BF/PLA composite was 74.3°, which was larger than that of the ungrafted composite (41.2°), and the water absorption ratio reached 4.3% after 24 h, which was less than the unmodified material (6.1%). SEM results showed that PLA matrix showed smooth surfaces and the interfacial adhesion between modified BF and matrix PLA was greatly improved after grafting modification. The crystal structure results proved that the grafting treatment of BF strengthened the interfacial interactions between the filler BF and matrix PLA, and reduced the mobility of PLA molecular chain. The rotational rheometer illustrated that the initial storage modulus of PLA-g-BF/PLA composites was the largest and decreased slowly, which improved the processing properties of composites.


Assuntos
Poliésteres/química , Polímeros/química , Sasa/química , Fenômenos Químicos , Interações Hidrofóbicas e Hidrofílicas , Fenômenos Mecânicos , Plastificantes/química , Polimerização , Reologia , Análise Espectral , Termogravimetria
9.
Polymers (Basel) ; 11(1)2019 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-30960056

RESUMO

Three kinds of hydrophobic groups grafted starches of maleic anhydride grafted starch (MAH-g-starch), lactic acid grafted starch (LA-g-starch), and methyl acrylate grafted starch (MA-g-starch) were prepared by in situ solid phase polymerization. The results of Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) confirmed successful grafting. The grafting ratios of MAH-g-starch, LA-g-starch, and MA-g-starch were 6.50%, 12.45%, and 0.57%, respectively. Influenced by the grafting ratio, LA-g-starch had the best relative hydrophobicity and the largest molecular weight, and those for MA-g-starch were the worst. The surfaces of grafted starches were covered with graft polymer, with obvious surface roughness and bond degree of MAH-g-starch and LA-g-starch. The crystalline structure of grafted starches showed some damage, with LA-g-starch exhibiting the greatest decrease in crystallinity, and less of a change for MA-g-starch. Overall, the grafting reaction improved thermoplasticity, with LA-g-starch the most improved, followed by MAH-g-starch, and then MA-g-starch.

10.
Int J Biol Macromol ; 127: 12-17, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30594628

RESUMO

A resorcinol-dialdehyde starch-formaldehyde (RDSF) copolycondensation resin adhesive was prepared by substituting high reactive dialdehyde starch for a portion of formaldehyde in the formulation. Fourier transforms infrared spectrometer (FTIR) analysis results confirmed that the copolycondensation reaction of the dialdehyde starch with resorcinol and formaldehyde was successful. The curing property, thermal stability, permeability and crystal structure of the RDSF adhesive were characterized using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscope (SEM), X-ray diffraction (XRD). The solids content, viscosity, curing time, bonding strength were also obtained. The results showed that the RDSF adhesive had a higher solids content, moderate viscosity, shorter curing time and better bond strength than a standard resorcinol-starch-formaldehyde (RSF) adhesive. It was found that dialdehyde starch could accelerate the curing rate, while decreasing the curing temperature and heat release during the curing process of RDSF. The dense cross-linked structure of the dialdehyde starch and resorcinol-formaldehyde (RF) system produced improved thermal stability. SEM results showed that the RDSF adhesive formed a thin and continuous adhesive layer on the surface of a poplar board, and filled the pores of the wood, which improved the bond strength. The crystal structure of the RDSF was not altered by addition of the starch, and the physicochemical properties of the adhesive were similar to those of a normal resorcinol-formaldehyde resin.


Assuntos
Adesivos/química , Adesivos/síntese química , Formaldeído/química , Resorcinóis/química , Amido/análogos & derivados , Amido/química
11.
Polymers (Basel) ; 10(8)2018 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-30960845

RESUMO

Bamboo plastic composites have become a hot research topic and a key focus of research. However, many strong, polar, hydrophilic hydroxyl groups in bamboo flour (BF) results in poor interfacial compatibility between BF and hydrophobic polymers. Maleic anhydride-esterified (MAH-e-BF) and lactic acid-esterified bamboo flour (LA-e-BF) were prepared while using an in situ solid-phase esterification method with BF as the raw material and maleic anhydride or lactic acid as the esterifying agent. Fourier transform infrared spectroscopy results confirmed that BF esterification with maleic anhydride and lactic acid was successful, with the esterification degrees of MAH-e-BF and LA-e-BF at 21.04 ± 0.23% and 14.28 ± 0.17%, respectively. Esterified BF was characterized by scanning electron microscopy, contact angle testing, X-ray diffractometry, and thermogravimetric analysis. The results demonstrated that esterified BF surfaces were covered with graft polymer and the surface roughness and bonding degree of MAH-e-BF clearly larger than those of LA-e-BF. The hydrophobicity of esterified BF was significantly higher than BF and the hydrophobicity of MAH-e-BF was better than LA-e-BF. The crystalline structure of esterified BF showed some damage, while MAH-e-BF exhibited a greater decrease in crystallinity than LA-e-BF. Overall, the esterification reaction improved BF thermoplasticity, with the thermoplasticity of MAH-e-BF appearing to be better than LA-e-BF.

12.
Int J Biol Macromol ; 103: 1257-1264, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28587965

RESUMO

Dialdehyde starch was prepared by one-step synthesis of acid hydrolysis and oxidation, using corn starch as the raw material, sodium periodate (NaIO4) as the oxidant, and hydrochloric acid (HCl) as the acid solution. The prepared dialdehyde starch was characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and gel permeation chromatography (GPC). The results confirmed that oxidation occurred between the starch and NaIO4. The acid hydrolysis reaction reduced the molecular weight of starch and effectively improved the aldehyde group contents (92.7%). Scanning electron microscope (SEM) analysis indicated that the average particle size decreased after acid hydrolysis and oxidation reaction. X-ray diffraction (XRD) and thermal gravimetric analyzer (TGA) analysis demonstrated that the crystallinity of the obtained dialdehyde starch showed a downward trend and a decelerated thermal decomposition rate. The starch after acid hydrolysis and oxidation exhibited lower hot paste viscosity and higher reactivity.


Assuntos
Ácido Clorídrico/química , Amido/análogos & derivados , Hidrólise , Peso Molecular , Oxidantes/química , Oxirredução , Ácido Periódico/química , Amido/química , Viscosidade
13.
Int J Biol Macromol ; 64: 174-80, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24315947

RESUMO

Corn starch and maleic anhydride were synthesized from a maleic anhydride esterified starch by dry method. Fourier transform infrared spectroscopy (FTIR) was used for the qualitative analysis of the esterified starches. The reaction efficiency of dry method esterified starch reached 92.34%. The dry method esterified starch was blended with polylactic acid (PLA), and the mixture was melted and extruded to produce the esterified starch/polylactic acid (ES/PLA) composites. The degree of crystallinity of the ES/PLA was lower than that of the NS/PLA, indicating that the relative dependence between these two components of starch and polylactic acid was enhanced. Scanning electron microscopy (SEM) indicated that the dry method esterified starch increased the two-phase interface compatibility of the composites, thereby improving the tensile strength, bending strength, and elongation at break of the ES/PLA composite. The introduction of a hydrophobic ester bond and increase in interface compatibility led to an increase in ES/PLA water resistance. Melt index determination results showed that starch esterification modification had improved the melt flow properties of starch/PLA composite material. Strain scanning also showed that the compatibility of ES/PLA was increased. While frequency scanning showed that the storage modulus and complex viscosity of ES/PLA was less than that of NS/PLA.


Assuntos
Ésteres/química , Ácido Láctico/química , Polímeros/química , Amido/química , Fenômenos Mecânicos , Poliésteres , Reologia , Viscosidade , Zea mays/química
14.
Int J Biol Macromol ; 62: 241-7, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23999015

RESUMO

Maleic anhydride esterified starch was synthesized by a dry method using corn starch as the material and maleic anhydride as the esterifying agent. The esterified starch (ES) was analyzed by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS), which confirmed that there was a successful esterification reaction between the maleic anhydride and corn starch. The effects of reaction temperature and time on the degree of substitution of esterified starch were studied, where the results showed that 80 °C of reaction temperature and 3h of reaction time were optimal conditions. The result of XPS testing demonstrated that the esterification reaction led to increase of ester bonds in starch. The scanning electron microscopy (SEM) and laser particle size analyzer results showed that esterification led to roughness on the surface of the starch particle, and the particle size and distribution rate of esterification starch became larger. X-ray diffraction (XRD) analysis demonstrated that esterification reaction did not change the crystalline type of native starch. The differential scanning calorimeter (DSC) and thermo gravimetric analysis (TGA) confirmed that destruction of the crystal structure resulted in improved thermoplasticity of the starch, decreased the gelatinization temperature and increased the thermogravimetric rate of esterification starch.


Assuntos
Técnicas de Química Sintética/métodos , Anidridos Maleicos/química , Anidridos Maleicos/síntese química , Amido/química , Zea mays/química , Técnicas de Química Sintética/economia , Cristalização , Esterificação , Química Verde , Cinética , Tamanho da Partícula , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...