Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Epigenomics ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38545853

RESUMO

Background: Environmental factors make an important contribution to suicide. Histone tails are prone to different modifications, leading to changes of chromatin (de)condensation and consequently gene expression. Materials & methods: Level of H3K14ac was studied with chromatin immunoprecipitation followed by high-throughput DNA sequencing. Genes were further validated with RT-qPCR; using hippocampal tissue. Results: We showed lowered H3K14ac levels in individuals who died by suicide. The genes ADORA2A, B4GALT2 and MMP14 showed differential expression in individuals who died by suicide. Identified genetic and protein interactions among genes show interactions with suicide-related genes. Conclusion: Further investigations of histone modifications in association with DNA methylation and miRNA are needed to expand our knowledge of the genes that could significantly contribute to suicide.

2.
Int J Legal Med ; 138(2): 395-400, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37776378

RESUMO

Optimizing analysis parameters and sample input is crucial in forensic genetics methods to generate reliable results, and even more so when working with muti-copy mitochondrial DNA (mtDNA) and low-quality samples. This study compared mitotypes based on next-generation sequencing (NGS) results derived from the same samples at two different sequencing library concentrations-30 pM and 0.3 pM. Thirty femur samples from the Second World War were used as a model for poorly preserved DNA. Quantitative PCR (qPCR) method targeting 113 bp long fragment was employed to assess the quantity of mitogenomes. HID Ion Chef™ Instrument with Precision ID mtDNA Control Region Panel was used for library preparation and templating. Sequencing was performed with Ion GeneStudio™ S5 System. Reference haplotypes were determined from sequencing samples at 30 pM library input. Haplotypes were compared between optimal (30 pM) and suboptimal (0.3 pM) library inputs. Often the difference in haplotypes was length heteroplasmy, which in line with other studies shows that this type of variant is not reliable for interpretation in forensics. Excluding length variants at positions 573, 309, and 16,193, 56.7% of the samples matched, and in two samples, no sequence was obtained at suboptimal library input. The rest of the samples differed between optimal and suboptimal library input. To conclude, genotyping and analyzing low-quantity libraries derived from low-quality aged skeletonized human remains therefore must be done with caution in forensic genetics casework.


Assuntos
DNA Mitocondrial , Genoma Mitocondrial , Humanos , Idoso , Análise de Sequência de DNA/métodos , DNA Mitocondrial/genética , DNA Mitocondrial/análise , Haplótipos , Impressões Digitais de DNA , Sequenciamento de Nucleotídeos em Larga Escala/métodos
3.
Genes Brain Behav ; 22(6): e12868, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37794714

RESUMO

Suicide is an important public-health concern, with more than 700,000 people dying by suicide yearly. It is a multifactorial phenomenon, shaped by the effects of sociodemographic, environmental and biological factors. The latter two factors can be linked through epigenetic studies, which examine differences in gene expression that are not due to changes in the DNA sequence itself. Epigenetic mechanisms include micro RNAs (miRNAs), which have a direct effect on already translated mRNA, leading to either decay or translational repression of the target mRNA. MiRNA molecules have been identified as cargo of extracellular vesicles (EVs) used by cells for long-distance communication, and pathophysiological changes in miRNA in brain cells may be reflected in cerebrospinal fluid (CSF) vesicles. In this study we investigated the presence and differential expression of selected miRNAs in EVs from the CSF of male suicide completers and controls. Western blot and nanoparticle tracking analyses confirmed the presence of small and medium sized EVs. Of the miRNA analyzed (miR-16-5p, miR-19a-3p, miR-34c-5p, miR-17-5p, miR-4286, miR-26b-5p, miR-381-3p, and miR-4516) miR-19a-3p and miR-4516 reached statistical significance with p-values of 0.0408 and 0.0168, respectively. Mir-4516 and miRNA-19a-3p have been previously studied in suicide, and target SLC6A4 and TNF-α expression, correspondingly. Approximately 70% of known miRNAs are expressed in the central nervous system, and therefore represent an important biomarker potential. Investigating the cargo of CFS and blood EVs would further support the identification of miRNAs with clinical use potential.


Assuntos
Vesículas Extracelulares , MicroRNAs , Suicídio , Humanos , Masculino , Eslovênia , MicroRNAs/genética , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , RNA Mensageiro/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo
4.
Int J Legal Med ; 137(6): 1653-1659, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37558822

RESUMO

Mitochondrial DNA (mtDNA) is of great value in forensics to procure information about a person when a next of kin, personal belongings, or other sources of nuclear DNA (nDNA) are unavailable, or nDNA is lacking in quality and quantity. The quality and reliability of the results depend greatly on ensuring optimal conditions for the given method, for instance, the optimal input of the copy number (CN) in next-generation sequencing (NGS) methods. The unavailability of commercial quantitative PCR (qPCR) methods to determine mtDNA CN creates the necessity to rely on recommendations to infer mtDNA CN from nDNA yield. Because nDNA yield varies between individuals, tissues, parts of the same tissue, and because mtDNA CN varies between tissues, such assumptions must be examined for a specific context, rather than be generalized. This study compares mtDNA CN calculated from nDNA yield and qPCR measured mtDNA CN. Seventy-five femurs from the Second World War victims were used as samples; they were cut below the greater trochanter, surface contaminants were removed by mechanical and chemical cleaning, samples were fully demineralized, and DNA was isolated. PowerQuant® Kit (Promega) was used to analyze DNA yield. An in-house method was used to determine mtDNA CN. Comparison of mtDNA CN from nDNA derived calculations and measured mtDNA CN highlighted vast differences. The results emphasize the need to perform qPCR to assess mtDNA CN before NGS analyses of aged bones' mitogenomes rather than estimating mtDNA CN from nDNA yield to ensure the quality and reliability of the results of NGS analysis.

5.
Genes (Basel) ; 14(7)2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37510353

RESUMO

It is very important to generate phenotypic results that are reliable when processing chronological old skeletal remains for cases involving the identification of missing persons. To improve the success of pigmentation prediction in Second World War victims, three bones from each of the eight skeletons analyzed were included in the study, which makes it possible to generate a consensus profile. The PowerQuant System was used for quantification, the ESI 17 Fast System was used for STR typing, and a customized version of the HIrisPlex panel was used for PCR-MPS. The HID Ion Chef Instrument was used for library preparation and templating. Sequencing was performed with the Ion GeneStudio S5 System. Identical full profiles and identical hair and eye color predictions were achieved from three bones analyzed per skeleton. Blue eye color was predicted in five skeletons and brown in three skeletons. Blond hair color was predicted in one skeleton, blond to dark blond in three skeletons, brown to dark brown in two skeletons, and dark brown to black in two skeletons. The reproducibility and reliability of the results proved the multisample analysis method to be beneficial for phenotyping chronological old skeletons because differences in DNA yields in different bone types provide a greater possibility of obtaining a better-quality consensus profile.


Assuntos
Restos Mortais , DNA , Humanos , Reprodutibilidade dos Testes , DNA/genética , Impressões Digitais de DNA , Osso e Ossos
6.
Forensic Sci Int Genet ; 65: 102882, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37141673

RESUMO

An efficient extraction method is important for obtaining high-quality DNA from degraded aged bone samples. An automated full-demineralization method using the EDTA and DNA Investigator Kit (Qiagen) combined with Qiagen's biorobots was optimized in our laboratory in the past to extract the DNA from 500 mg of aged bone samples. The purpose of this research was to further improve the method with the aim of reducing the required sample material, shortening the extraction time, and achieving higher throughput. To process extremely small samples, the amount of bone powder was reduced to 75 mg, EDTA was replaced with reagents from the Bone DNA Extraction Kit (Promega), and decalcification was shortened from overnight to 2.5 h. Instead of 50 ml tubes, 2 ml tubes were used, which allows higher throughput. The DNA Investigator Kit (Qiagen) and EZ1 Advanced XL biorobot (Qiagen) was used for DNA purification. A comparison between both extraction methods was made on 29 Second World War bones and 22 archaeological bone samples. The differences between both methods were explored by measuring nuclear DNA yield and STR typing success. After cleaning the samples, 500 mg of bone powder was processed using EDTA, and 75 mg of powder from the same bone was processed using the Bone DNA Extraction Kit (Promega). DNA content and DNA degradation were determined using PowerQuant (Promega), and the PowerPlex ESI 17 Fast System (Promega) was used for STR typing. The results showed that the full-demineralization protocol using 500 mg of bone was efficient for Second World War and archaeological samples, and the partial-demineralization protocol using 75 mg of bone powder was only efficient for the Second World War bones. The improved extraction method-for which significantly lower amounts of bone powder can be used, the extraction process is faster, and higher throughput of bone samples is possible-is applicable for genetic identification of relatively well-preserved aged bone samples in routine forensic analyses.


Assuntos
Impressões Digitais de DNA , Repetições de Microssatélites , Humanos , Idoso , Pós , Ácido Edético , Impressões Digitais de DNA/métodos , DNA
7.
Int J Legal Med ; 137(4): 981-993, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37212920

RESUMO

PCR-MPS is an emerging tool for the analysis of low-quality DNA samples. In this study, we used PCR-MPS to analyse 32 challenging bone DNA samples from three Second World War victims, which previously yielded no results in conventional STR PCR-CE typing. The Identity Panel was used with 27 cycles of PCR. Despite that we only had an average of 6.8 pg of degraded DNA as template, 30 out of 32 libraries (93.8%) produced sequencing data for about 63/90 autosomal markers per sample. Out of the 30 libraries, 14 (46.7%) yielded single source genetic profiles in agreement with the biological identity of the donor, whereas 12 cases (40.0%) resulted in SNP profiles that did not match or were mixed. The misleading outcomes for those 12 cases were likely due to hidden exogenous human contamination, as shown by the higher frequencies of allelic imbalance, unusual high frequencies of allelic drop-ins, high heterozygosity levels in the consensus profiles generated from challenging samples, and traces of amplified molecular products in four out of eight extraction negative controls. Even if the source and the time of the contamination were not identified, it is likely that it occurred along the multi-step bone processing workflow. Our results suggest that only positive identification by statistical tools (e.g. likelihood ratio) should be accepted as reliable; oppositely, the results leading to exclusion should be treated as inconclusive because of potential contamination issues. Finally, strategies are discussed for monitoring the workflow of extremely challenging bone samples in PCR-MPS experiments with an increased number of PCR cycles.


Assuntos
Artefatos , Polimorfismo de Nucleotídeo Único , Humanos , Impressões Digitais de DNA , Heterozigoto , DNA/genética , Análise de Sequência de DNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Repetições de Microssatélites
8.
World J Biol Psychiatry ; 24(1): 12-23, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35200087

RESUMO

OBJECTIVES: Epigenetic mechanisms are involved in regulation of many pathologies, including suicidal behaviour. However, the factors through which epigenetics affect suicidal behaviour are not fully understood. METHODS: We analysed DNA methylation of eight neuropsychiatric genes (NR3C1, SLC6A4, HTR1A, TPH2, SKA2, MAOA, GABRA1, and NRIP3) in brain regions (hippocampus, insula, amygdala, Brodmann area 46) and blood of 25 male suicide victims and 28 male control subjects, using bisulphite next-generation sequencing. RESULTS: Comparing mean methylation values, notable changes were observed in NR3C1 (insula p-value = 0.05), HTR1A (insula p-value < 0.001, blood p-value = 0.001), SKA2 (insula p-value = 0.03, blood p-value = 0.016), MAOA (blood p-value < 0.001), GABRA1 (insula p-value = 0.05, blood p-value = 0.024) and NRIP3 (hippocampus p-value = 0.001, insula p-value = 0.002, amygdala p-value = 0.014). Comparing methylation pattern between blood and brain, similarity was observed between blood and insula for HTR1A. Gene expression analysis in hippocampus revealed changes in expression of NR3C1 (p-value = 0.049), SLC6A4 (p-value = 0.017) and HTR1A (p-value = 0.053). CONCLUSIONS: Results provide an insight into the altered state of DNA methylation in suicidal behaviour. Epigenetic differences could therefore affect suicidal behaviour in both previously known and in novel neuropsychiatric candidate genes.


Assuntos
Metilação de DNA , Suicídio , Humanos , Masculino , Ideação Suicida , Encéfalo/diagnóstico por imagem , Epigênese Genética , Expressão Gênica , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética
9.
Genes (Basel) ; 13(8)2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-36011343

RESUMO

To test the usefulness of the forensic PCR-MPS approach to eye and hair color prediction for aged skeletons, a customized version of the PCR-MPS HIrisPlex panel was used on two sets of samples. The first set contained 11 skeletons dated from the 3rd to the 18th centuries AD, and for each of them at least four bone types were analyzed (for a total of 47 samples). In the second set, 24 skeletons from the Second World War were analyzed, and only petrous bones from the skulls were tested. Good-quality libraries were achieved in 83.3% of the cases for the ancient skeletons and in all Second World War petrous bones, with 94.7% and 100% of the markers, respectively, suitable for SNP typing. Consensus typing was achieved for about 91.7% of the markers in 10 out of 11 ancient skeletons, and the HIrisPlex-S webtool was then used to generate phenotypic predictions. Full predictions were achieved for 3 (27.3%) ancient skeletons and 12 (50%) Second World War petrous bones. In the remaining cases, different levels of AUC (area under the receiver operating curve) loss were computed because of no available data (NA) for 8.3% of markers in ancient skeletons and 4.2% of markers in Second World War petrous bones. Although the PCR-based approach has been replaced with new techniques in ancient DNA studies, the results show that customized forensic technologies can be successfully applied to aged bone remains, highlighting the role of the template in the success of PCR-MPS analysis. However, because several typical errors of ancient DNA sequencing were scored, replicate tests and accurate evaluation by an expert remain indispensable tools.


Assuntos
Restos Mortais , Cor de Olho , Cor de Cabelo , Idoso , DNA/genética , DNA Antigo , Cor de Olho/genética , Cor de Cabelo/genética , Humanos , Reação em Cadeia da Polimerase , II Guerra Mundial
10.
Int J Legal Med ; 136(5): 1247-1253, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35729437

RESUMO

The choice of skeletal element types and their intra-bone parts is important because of differences in DNA preservation, and this must be considered when sampling bones for DNA testing. When incomplete skeletons are found, ribs and vertebrae have been shown to be the most suitable for genetic identification of bones from the torso. This study compares the preservation of DNA between 12th thoracic vertebrae and first ribs to determine which bone type is more suitable for genetic typing. The study analyzed 35 12th thoracic vertebrae and 29 first ribs from one mass grave from the Second World War with commingled skeletal remains excavated. Bone DNA preservation was estimated by measuring nuclear DNA concentration and its degradation and through short tandem repeat (STR) typing success. Previous studies performed on aged skeletal remains have shown that the DNA content of the first ribs and 12th thoracic vertebrae has high intra-bone variability, and this was considered when sampling the bones. After full demineralization extraction, the PowerQuant System (Promega) was used to measure the quantity and quality of DNA, and the GlobalFiler kit (Applied Biosystems) was used for STR typing. The results showed that DNA yield and degradation and STR typing success exhibited no statistically significant difference between first ribs and 12th thoracic vertebrae, and there was no intra-individual difference when comparing only paired bones from the same individuals. Consequently, with intra-bone DNA variability considered, the first ribs or the 12th thoracic vertebrae can be selected when sampling to genetically identify the skeletal remains of highly degraded torsos. HIGHLIGHTS: The first ribs and thoracic vertebrae are the most suitable bones for sampling from the torso. The proximal part of first rib and posterior vertebral column of the 12th thoracic vertebrae yielded the most DNA. The first ribs were compared with the 12th thoracic vertebrae, and the sampling process considered intra-bone DNA variability. The quality and quantity of nuclear DNA and success of STR typing were measured. The first ribs yielded the same DNA yields as well as STR typing success as the 12th thoracic vertebrae. When only the torso is present, it is not of high importance whether the first ribs or the 12th thoracic vertebrae are collected.


Assuntos
Restos Mortais , Impressões Digitais de DNA , Idoso , DNA , Impressões Digitais de DNA/métodos , Humanos , Repetições de Microssatélites , Costelas , Coluna Vertebral , Vértebras Torácicas
11.
Genes (Basel) ; 13(4)2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35456368

RESUMO

Suicide is multifactorial and polygenic phenotype, affected by environmental and genetic factors. Among epigenetic mechanisms, miRNAs have been studied, but so far no very concise results exist. To overcome limitations of candidate miRNA and whole genome sequencing approaches, we created an in silico analysis algorithm that would help select the best suitable miRNAs that target the most interesting genes associated with suicidality. We used databases/web algorithms DIANA microT, miRDB, miRmap, miRWalk, and TargetScan and candidate genes SLC6A4, HTR1A, BDNF, NR3C1, ZNF714, and NRIP3. Based on a prediction algorithm, we have chosen miRNAs that are targeting regulation of the genes listed, and are at the same time being expressed in the brain. The highest ranking scores were obtained for hsa-miR-4516, hsa-miR-3135b, hsa-miR-124-3p, hsa-miR-129-5p, hsa-miR-27b-3p, hsa-miR-381-3p, hsa-miR-4286. Expression of these miRNAs was tested in the brain tissue of 40 suicide completers and controls, and hsa-miR-4516 and hsa-miR-381-3p showed a trend for statistical significance. We also checked the expression of the target genes of these miRNAs, and for NR3C1 expression was lower in suicide completers compared to controls, which is in accordance with the available literature results. To determine the miRNAs that are most suitable for further suicidality research, more studies, combining in silico analysis and wet lab experiments, should be performed.


Assuntos
MicroRNAs , Suicídio , Algoritmos , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina
12.
Electrophoresis ; 43(13-14): 1521-1530, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35358339

RESUMO

The recent introduction of polymerase chain reaction (PCR)-massively parallel sequencing (MPS) technologies in forensics has changed the approach to allelic short tandem repeat (STR) typing because sequencing cloned PCR fragments enables alleles with identical molecular weights to be distinguished based on their nucleotide sequences. Therefore, because PCR fidelity mainly depends on template integrity, new technical issues could arise in the interpretation of the results obtained from the degraded samples. In this work, a set of DNA samples degraded in vitro was used to investigate whether PCR-MPS could generate "isometric drop-ins" (IDIs; i.e., molecular products having the same length as the original allele but with a different nucleotide sequence within the repeated units). The Precision ID GlobalFiler NGS STR panel kit was used to analyze 0.5 and 1 ng of mock samples in duplicate tests (for a total of 16 PCR-MPS analyses). As expected, several well-known PCR artifacts (such as allelic dropout, stutters above the threshold) were scored; 95 IDIs with an average occurrence of 5.9 IDIs per test (min: 1, max: 11) were scored as well. In total, IDIs represented one of the most frequent artifacts. The coverage of these IDIs reached up to 981 reads (median: 239 reads), and the ratios with the coverage of the original allele ranged from 0.069 to 7.285 (median: 0.221). In addition, approximately 5.2% of the IDIs showed coverage higher than that of the original allele. Molecular analysis of these artifacts showed that they were generated in 96.8% of cases through a single nucleotide change event, with the C > T transition being the most frequent (85.7%). Thus, in a forensic evaluation of evidence, IDIs may represent an actual issue, particularly when DNA mixtures need to be interpreted because they could mislead the operator regarding the number of contributors. Overall, the molecular features of the IDIs described in this work, as well as the performance of duplicate tests, may be useful tools for managing this new class of artifacts otherwise not detected by capillary electrophoresis technology.


Assuntos
Artefatos , Impressões Digitais de DNA , Alelos , DNA/análise , Impressões Digitais de DNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Repetições de Microssatélites/genética , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Tecnologia
13.
Forensic Sci Int Genet ; 55: 102587, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34479116

RESUMO

Bones are an important source of DNA for identification in forensic medicine, especially when the remains are skeletonized, which is the case when dealing with victims of the Second World War. Often the amount of bone available for sampling is limited, and therefore it is crucial to sample the bone segment with the highest adequate DNA quantity for identification. Studies performed on all representative skeletal element types of the human body showed that the amount of DNA obtained from different skeletal elements of different body regions varies greatly. When bones from torso were analyzed, thoracic vertebrae outperformed other vertebrae (cervical and lumbar) and, alongside the first ribs, were among the most appropriate bone elements for identification purposes. It was also shown that the quantity of DNA varies significantly within a single bone type. This study focused on exploring intra-bone DNA variability between five parts of 12th thoracic vertebrae (laminae + spinous process, pedicles + transverse processes, and corpus right, left, and middle). The research was based on the theory that the distribution of body weight and consequently bone remodeling, as well as the ratio between cancellous and cortical bone, contribute to different quantities of DNA in different parts of vertebra sampled. The vertebrae were cleaned and cut into five parts, and each part was completely ground to obtain homogenous bone powder. Half a gram of powder from each part was decalcified using a full demineralization extraction method. The DNA was purified in a Biorobot EZ1 machine (Qiagen). DNA quantity and quality were determined using the PowerQuant System (Promega) and autosomal STR typing success using the GlobalFiler Amplification Kit (Applied Biosystems). Thirty-five 12th thoracic vertebrae were sampled from a single Second World War mass grave. The best results with the highest DNA quantity were found in laminae and the spinous process, and among them all vertebrae analyzed yielded full STR profiles except three, where only a few dropouts occurred. The second-ranked bone part was the pedicles and transverse processes. The comparison of DNA degradation in the vertebral segments analyzed does not show statistically significant differences. Considering our research, when only the torso is available for identification, the 12th thoracic vertebra should be collected and the vertebral arch should be sampled for genetic analyses.


Assuntos
Vértebras Torácicas , II Guerra Mundial , DNA/genética , Impressões Digitais de DNA , Humanos , Repetições de Microssatélites
15.
Forensic Sci Int Genet ; 55: 102578, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34425360

RESUMO

DNA yield and STR typing success differ among skeletal element types and within individual bones. Consequently, it is necessary to identify the skeletal elements and their intra-skeletal parts that will most likely yield utilizable and informative endogenous DNA for human identification of skeletal remains. The petrous portion of the temporal bone has been shown to be the most suitable skeletal part for sampling archaeological skeletons, and it has also been used successfully in some forensic cases. When all representative bone types were analyzed for three complete Second World War skeletons, metatarsals and metacarpals yielded more DNA than petrous bones (which generated full profiles even if the DNA yield was lower) and, among almost 200 Second World War metatarsals and metacarpals analyzed, metacarpals III were found to be the highest-yielding bones. To further improve the sampling strategy in DNA analysis of aged skeletal remains, a comparison between 26 petrous bones and 30 metacarpals III from Second World War skeletons was made considering intra-bone DNA yield variability. In metacarpals III only epiphyses were sampled, and in petrous bones only the dense part within the otic capsule was used. To exclude the influence of taphonomic issues as much as possible, petrous bones and metacarpals III from a single Second World War mass grave were examined. The difference between petrous bones and metacarpals III was explored by measuring nuclear DNA yield and success of STR typing. After cleaning the samples, full demineralization extraction was used to decalcify 0.5 g of powdered bone. PowerQuant (Promega) was used to determine DNA content and DNA degradation rates, and STR typing was performed using the PowerPlex ESI 17 Fast System (Promega). Metacarpals III produced the same DNA yields and STR typing success as petrous bones with no intra-individual difference observed in concentration of DNA, degradation rate, percentage of successfully amplified alleles, and intensity of electrophoretic signals. Sampling and processing of metacarpal III epiphyses is consequently recommended for genetic identification of highly degraded skeletal remains in routine forensic casework and in buried non-commingled aged skeletal remains whenever metacarpals III are preserved. Metacarpals III are easy to sample and less prone to contamination with modern DNA because no saw is needed for sampling in comparison to the petrous portion of the temporal bone. The data obtained in this study further improve the sampling strategy for genetic identification of Second World War skeletal remains in Slovenia.


Assuntos
Ossos Metacarpais , II Guerra Mundial , Idoso , DNA , Impressões Digitais de DNA , Humanos , Osso Petroso
16.
Int J Legal Med ; 135(6): 2199-2208, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34396484

RESUMO

DNA sampling and typing are used for identifying missing persons or war victims. In recent forensic studies, little focus has been placed on determining intra-bone variability within a single skeletal element. When dealing with aged human bones, complete skeletal remains are rarely present. In cases in which only the torso is available, studies have shown that ribs are one of the most appropriate samples, but intra-bone variability has not yet been studied. A higher degree of remodeling was found to contribute to higher DNA yield in the parts of the skeletal element where the most strain is concentrated. This study explores intra-bone variability in proximal, middle, and distal parts of the first human rib by determining the quantity and quality of DNA using the PowerQuant System (Promega) and autosomal STR typing success using the PowerPlex ESI 17 Fast System (Promega). Thirty first ribs from a single Second World War mass grave were sampled. No variation in DNA degradation was observed across the individual rib. The highest quantity of DNA was measured in the proximal part of the first rib, and in all ribs except three, full or almost full genetic profiles were obtained. Thus, when only the torso is present in archaeological or medico-legal cases, first ribs are recommended to be collected if possible, and the proximal or vertebral ends should be sampled for genetic analysis.


Assuntos
Impressões Digitais de DNA , Costelas , II Guerra Mundial , Idoso , DNA , Humanos , Repetições de Microssatélites
17.
Int J Legal Med ; 135(4): 1245-1256, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33624158

RESUMO

DNA analysis of Second World War skeletal remains is challenging because of the limited yield of DNA that is usually recovered. Recent forensic research has focused on determining which skeletal elements are superior in their preservation of DNA, and little focus has been placed on measuring intra-bone variability. Metatarsals and metacarpals outperformed all the other bones in DNA yield when analyzing all representative skeletal elements of three Second World War victims, and intra-bone variability was not studied. Soft-tissue remnants were found to contribute to higher DNA yield in trabecular bone tissue. Because metatarsals and metacarpals are composed of trabecular epiphyses and a dense diaphysis, the goal of this study was to explore intra-bone variability in DNA content by measuring nuclear DNA quantity and quality using the PowerQuant System (Promega). A total of 193 bones from a single Second World War mass grave were examined. From each bone, DNA was extracted from the compact diaphysis and from both spongy epiphyses combined. This study confirms higher DNA quantity in epiphyses than diaphyses among all the bones analyzed, and more DNA was obtained from metacarpal epiphyses than from metatarsal epiphyses. Therefore, whenever the possibility for sampling both metacarpals and metatarsals from skeletal remains exists, collecting metacarpals is recommended. In cases in which the hands are missing, metatarsals should be sampled. In any case, epiphyses are a richer source of DNA than diaphyses.


Assuntos
DNA/análise , Diáfises/química , Epífises/química , Ossos Metacarpais , Ossos do Metatarso , Restos Mortais , Humanos , II Guerra Mundial
18.
World J Psychiatry ; 11(12): 1301-1313, 2021 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-35070779

RESUMO

BACKGROUND: Suicide is a major public health problem. Worldwide, around 800000 people die by suicide every year. Suicide is a multifactorial disorder, with numerous environmental and genetic risk factors involved. Among the candidate genes, changes in the BDNF locus at the gene, epigenetic, mRNA, and protein expression levels have been implicated in psychiatric disorders, including suicidal behavior and completed suicides. AIM: To investigate changes in BDNF methylation and expression of four alternative BDNF transcripts for association with completed suicide. METHODS: This case-control study included 42 unrelated male Caucasian subjects, where 20 were control subjects who died following acute cardiac arrest, and 22 were suicide victims who died by hanging. DNA and RNA were extracted from brain tissue (Brodmann area 9 and hippocampus) and from blood. DNA methylation and mRNA expression levels were determined by targeted bisulfite next-generation sequencing and reverse-transcription quantitative PCR. Statistical analysis was done by use of two-tailed Student's t tests for two independent samples, and the Benjamini-Hochberg procedure was implemented for correction for multiple comparisons. RESULTS: In DNA from brain tissue, there were no significant differences in BDNF methylation between the study groups. However, data showed significantly reduced DNA methylation of the BDNF region upstream of exon I in blood samples of suicide victims compared to the controls (5.67 ± 0.57 vs 6.83 ± 0.64, P corr = 0.01). In Brodmann area 9 of the brain of the suicide victims but not in their hippocampus, there was higher expression of BDNF transcript I-IX (NM_170731.4) compared to the controls (0.077 ± 0.024 vs 0.05 ± 0.013, P = 0.042). In blood, expression analysis for the BDNF transcripts was not feasible due to extensive RNA degradation. CONCLUSION: Despite the limitations of the study, the obtained data further support a role for BDNF in suicidality. However, it should be noted that suicidal behavior is a multifactorial disorder with numerous environmental and genetic risk factors involved.

19.
Forensic Sci Int Genet ; 51: 102426, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33248348

RESUMO

DNA yield varies by anatomical region, and the selection of bone types that yield maximum recovery of DNA is important to maximize the success of human identification of skeletal remains. The goal of our study was to explore inter- and intra-individual variation in DNA content by measuring nuclear DNA quantity and quality and autosomal STR typing success to determine the most promising skeletal elements for bone sampling. To exclude the influence of taphonomic issues as much as possible, three complete male skeletons from a single Second World War mass grave were examined and all representative skeletal element types of the human body were analyzed. Forty-eight different types of bones from the head, torso, arm, leg, hand, and foot were sampled from each skeleton, 144 bones altogether. The samples were cleaned, and half a gram of bone powder was decalcified using a full demineralization extraction method. The DNA was purified in a Biorobot EZ1 (Qiagen). DNA content and rates of DNA degradation were determined with the PowerQuant (Promega), and the Investigator ESSplex SE QS (Qiagen) was used for STR typing. The highest-yielding bones mostly produced the most complete STR profiles. Among the skeletal elements containing on average the most DNA and producing the most complete profiles in all three skeletons examined were metacarpals, metatarsals, and the petrous portion of the temporal bone. Metatarsals and metacarpals can easily be sampled without using a saw, thus reducing potential DNA contamination. Skeletons from the Second World War can be used as a model for poorly preserved skeletal remains, and the results of the investigation can be applied for genetic identification of highly degraded skeletal remains in routine forensic casework. Although the research was limited to only three skeletons found in a unique mass grave, the data obtained could contribute to sampling strategies for identifying old skeletal remains. More Second World War skeletons will be analyzed in the future to investigate inter-bone variation in the preservation of DNA.


Assuntos
Restos Mortais , DNA/análise , Ossos Metacarpais/química , Ossos do Metatarso/química , Impressões Digitais de DNA , Antropologia Forense , Humanos , Masculino , Repetições de Microssatélites , Eslovênia , II Guerra Mundial
20.
Int J Legal Med ; 134(5): 1629-1638, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32372234

RESUMO

For identification of badly preserved cadavers, only a few tissues can be used as a source of DNA, mostly bones and teeth, from which sampling and DNA extraction are difficult and time-consuming. In most highly decomposed remains, the nails are preserved. The aim of this study was to evaluate nails as an alternative source of DNA instead of bones and teeth in demanding routine identification cases. An automated extraction method was optimized on nails obtained from 33 cadavers with a post-mortem interval (PMI) up to 5 years. The commercially available EZ1 Investigator Kit (Qiagen) was used for extraction, and the G2 buffer included in the kit was replaced with TNCa buffer, and DTT was added for digestion of 5 mg of nail. The DNA was purified in a Biorobot EZ1 device (Qiagen), quantified using the PowerQuant System (Promega), and STR typing was performed with the NGM kit (TFS). From 0.3 to 270 µg DNA/g of nail was obtained from the samples analyzed, with an average yield of 36 µg DNA/g of nail. Full STR profiles were obtained from all nails except one. The optimized extraction method proved to be fast and highly efficient in the removal of PCR inhibitors, and it yields high amounts of DNA for successful STR typing. Nails were implemented as the primary sample type for obtaining DNA from highly decomposed and partially skeletonized cadavers in routine forensic identification cases in our laboratory.


Assuntos
Restos Mortais , Impressões Digitais de DNA/métodos , DNA/análise , Antropologia Forense/métodos , Repetições de Microssatélites , Unhas/química , Humanos , Reação em Cadeia da Polimerase Multiplex/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...