Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 16446, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37777629

RESUMO

We present theoretical justification for distorted Ruddlesden-Popper (RP) phases of the first-order by using hybrid density functional theory (DFT) calculations and group-theoretical analysis. We, thus, demonstrate the existence of the Jahn-Teller effect around an Fe[Formula: see text] ion in Sr[Formula: see text]FeO[Formula: see text]. On the calculation side, we have established a combination of Wu-Cohen (WC) exchange and Perdew-Wang (PW) correlation in a three-parameter functional WC3PW, giving the most accurate description of Sr[Formula: see text]FeO[Formula: see text] from the comparison of three hybrid DFT functionals. Self-consistently obtained Hartree-Fock exact exchange of 0.16 demonstrates consistent results with the experimental literature data. Importantly, we explain conditions for co-existing proper and pseudo-Jahn-Teller effects from the crystalline orbitals, symmetry-mode analysis and irreps products. Moreover, phonon frequency calculations support and confirm the results of symmetry-mode analysis. In particular, the symmetry-mode analysis identifies a dominating irreducible representation of the Jahn-Teller mode (X2+) and corresponding space group (SG) of ground state structure (SG Cmce model). Therefore, the usually suggested high-symmetry tetragonal crystal structure (SG I4/mmm model) is higher in energy by 121 meV/f.u. (equivalent to the Jahn-Teller stabilization energy) compared with the distorted low-symmetry structure (SG Cmce model). We also present diffraction patterns for the two crystal symmetries to discuss the differences. Therefore, our results shed light on the existence of low-symmetry RP phases and make possible direct comparisons with future experiments.

2.
Materials (Basel) ; 16(18)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37763485

RESUMO

While the bulk strontium titanate (STO) crystal characteristics are relatively well known, ultrathin perovskites' nanostructure, chemical composition, and crystallinity are quite complex and challenging to understand in detail. In our study, the DFT methods were used for modelling the Raman spectra of the STO bulk (space group I4/mcm) and 5-21-layer thin films (layer group p4/mbm) in tetragonal phase with different thicknesses ranging from ~0.8 to 3.9 nm. Our calculations revealed features in the Raman spectra of the films that were absent in the bulk spectra. Out of the seven Raman-active modes associated with bulk STO, the frequencies of five modes (2Eg, A1g, B2g, and B1g) decreased as the film thickness increased, while the low-frequency B2g and higher-frequency Eg modes frequencies increased. The modes in the films exhibited vibrations with different amplitudes in the central or surface parts of the films compared to the bulk, resulting in frequency shifts. Some peaks related to bulk vibrations were too weak (compared to the new modes related to films) to distinguish in the Raman spectra. However, as the film thickness increased, the Raman modes approached the frequencies of the bulk, and their intensities became higher, making them more noticeable in the Raman spectrum. Our results could help to explain inconsistencies in the experimental data for thin STO films, providing insights into the behavior of Raman modes and their relationship with film thickness.

3.
Materials (Basel) ; 15(7)2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35408027

RESUMO

The atomic structure of antiphase boundaries in Sr-doped lanthanum scandate (La1-xSrxScO3-δ) perovskite, promising as the proton conductor, was modelled by means of DFT method. Two structural types of interfaces formed by structural octahedral coupling were constructed: edge- and face-shared. The energetic stability of these two interfaces was investigated. The mechanisms of oxygen vacancy formation and migration in both types of interfaces were modelled. It was shown that both interfaces are structurally stable and facilitate oxygen ionic migration. Oxygen vacancy formation energy in interfaces is lower than that in the regular structure, which favours the oxygen vacancy segregation within such interfaces. The calculated energy profile suggests that both types of interfaces are advantageous for oxygen ion migration in the material.

4.
Phys Chem Chem Phys ; 23(32): 17493-17501, 2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34355713

RESUMO

Cobalt based perovskites have great potential for numerous applications. Contrary to a generally assumed hexagonal space group (SG P63/mmc) model as the ground state of BaCoO3 (BCO), our hybrid DFT calculations with B1WC density functional and the symmetry group-subgroup derived crystal structure model support the ground state of BCO to be indeed monoclinic, in agreement with recent experimental predictions [Chin et al., Phys. Rev. B, 2019, 100, 205139]. We found for the monoclinic BCO that the C-type anti-ferromagnetic low-spin (AFM LS) state (SG P2/c) is energetically only slightly more preferential at 0 K than the ferromagnetic (FM) LS state (SG C2/c). In turn, these monoclinic structures are energetically more favourable than the hexagonal ones, due to slight z-axis tilting. The analysis of density of states (DOS) and crystal orbital overlap population (COOP) shows a significant (almost 2 eV) separation between occupied and empty t2g states (in the spin-down channel and corresponding anti-bonding states) induced by the z-axis tilting.

5.
Phys Chem Chem Phys ; 21(42): 23541-23551, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31617511

RESUMO

We present the results of a detailed first principles study of the piezoelectric properties of the (SrTiO3)m/(BaTiO3)M-m heterostructure using the 3D STOm/BTOM-m superlattice model. The atomic basis set, hybrid functionals and slabs with different numbers of STO and BTO layers were used. The interplay between ferroelectric (FEz) and antiferrodistortive (AFDz) displacements is carefully analyzed. Based on the experimental data and group theoretical analysis, we deduce two possible space groups of tetragonal symmetry which allow us to reproduce the experimentally known pure STO and BTO bulk phases in the limiting cases, and to model the corresponding intermediate superlattices. The characteristic feature of the space group P4mm (#99) model is atomic displacements in the [001] direction, which allows us to simulate the FEz displacements, whereas the P4 (#75) model besides FEz displacements permits oxygen octahedra antiphase rotations around the [001] direction and thus AFDz displacements. Our calculations demonstrate that for m/M≤ 0.75 layer ratios both models show similar geometries and piezoelectric constants. Moreover, both models predict an approximately 6-fold increase of the piezoelectric constant e33 compared to the BaTiO3 bulk value, albeit at slightly different layer ratios. The obtained results clearly demonstrate that piezoelectricity arises due to the coordinated collective FEz displacements of atoms in both STO and BTO slabs and interfaces and reaches its maximum when the superlattice approaches the point where the tetragonal phase becomes unstable and transforms to a pseudo-cubic phase. We demonstrate that even a single or double layer of BTO is sufficient to trigger FEz displacements in the STO slab, in P4mm and P4 models, respectively.

6.
Nanoscale ; 11(15): 7293-7303, 2019 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-30938394

RESUMO

The colloidal processing of nearly monodisperse and highly crystalline single-domain ferroelectric or ferromagnetic nanocubes is a promising route to produce superlattice structures for integration into next-generation devices, whereas controlling the local behaviour of nanocrystals is imperative for fabricating highly-ordered assemblies. The current picture of nanoscale polarization in individual nanocrystals suggests a potential presence of a significant dipolar interaction, but its role in the condensation of nanocubes is unknown. We simulate the self-assembly of colloidal dipolar nanocubes under osmotic compression and perform the microstructural characterization of their densified ensembles. Our results indicate that the long-range positional and orientational correlations of perovskite nanocubes are highly sensitive to the presence of dipoles.

7.
J Phys Chem A ; 121(49): 9409-9414, 2017 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-29148772

RESUMO

An enhancement of the piezoelectric properties of lead-free materials, which allow conversion of mechanical energy into electricity, is a task of great importance and interest. Results of first-principles calculations of piezoelectric/electromechanical properties of the Ba(1-x)SrxTiO3 (BSTO) ferroelectric solid solution with a perovskite structure are presented and discussed. Calculations are performed within the linear combination of atomic orbitals (LCAO) approximation and periodic-boundary conditions, using the advanced hybrid functionals of density functional theory (DFT). A supercell model allows the investigation of multiple chemical compositions x. In particular, three BSTO solid solutions with x = 0, 0.125, 0.25 are considered within the experimental stability domain of the ferroelectric tetragonal phase of the solid solution (x < 0.3). The configurational disorder with x = 0.25 composition is also investigated explicitly considering the seven possible atomic configurations corresponding to this composition. It is predicted that Sr-doping of BaTiO3 makes it mechanically harder and enhances its electromechanical/piezoelectric properties, which are important for relevant applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...