Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 6321, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35428848

RESUMO

The Indium Tin Oxide (ITO) platform is one of the promising solutions for state-of-the-art integrated optical modulators towards low-loss silicon photonics applications. One of the key challenges on this way is to optimize ITO-based thin films stacks for electro-optic modulators with both high extinction ratio and low insertion loss. In this paper we demonstrate the e-beam evaporation technology of 20 nm-thick ITO films with low extinction coefficient of 0.14 (Nc = 3.7·1020 cm-3) at 1550 nm wavelength and wide range of carrier concentrations (from 1 to 10 × 1020 cm-3). We investigate ITO films with amorphous, heterogeneously crystalline, homogeneously crystalline with hidden coarse grains and pronounced coarsely crystalline structure to achieve the desired optical and electrical parameters. Here we report the mechanism of oxygen migration in ITO film crystallization based on observed morphological features under low-energy growth conditions. Finally, we experimentally compare the current-voltage and optical characteristics of three electro-optic active elements based on ITO film stacks and reach strong ITO dielectric permittivity variation induced by charge accumulation/depletion (Δn = 0.199, Δk = 0.240 at λ = 1550 nm under ± 16 V). Our simulations and experimental results demonstrate the unique potential to create integrated GHz-range electro-optical modulators with sub-dB losses.

2.
Sci Rep ; 10(1): 21107, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33273691

RESUMO

Nanoparticles and biological molecules high throughput robust separation is of significant interest in many healthcare and nanoscience industrial applications. In this work, we report an on-chip automatic efficient separation and preconcentration method of dissimilar sized particles within a microfluidic platform using integrated membrane valves controlled microfiltration. Micro-sized E. coli bacteria are sorted from nanoparticles and preconcentrated on a microfluidic chip with six integrated pneumatic valves (sub-100 nL dead volume) using hydrophilic PVDF filter with 0.45 µm pore diameter. The proposed on-chip automatic sorting sequence includes a sample filtration, dead volume washout and retentate backflush in reverse flow. We showed that pulse backflush mode and volume control can dramatically increase microparticles sorting and preconcentration efficiency. We demonstrate that at the optimal pulse backflush regime a separation efficiency of E. coli cells up to 81.33% at a separation throughput of 120.45 µL/min can be achieved. A trimmed mode when the backflush volume is twice smaller than the initial sample results in a preconcentration efficiency of E. coli cells up to 121.96% at a throughput of 80.93 µL/min. Finally, we propose a cyclic on-chip preconcentration method which demonstrates E. coli cells preconcentration efficiency of 536% at a throughput of 1.98 µL/min and 294% preconcentration efficiency at a 10.9 µL/min throughput.


Assuntos
Escherichia coli/isolamento & purificação , Técnicas Analíticas Microfluídicas/métodos , Filtração , Limite de Detecção
3.
Opt Express ; 25(15): 17021-17038, 2017 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-28789200

RESUMO

Optical properties of two dimensional periodic system of the silicon micro-cones are investigated. The metasurface, composed of the silicon tips, shows enhancement of the local optical field. Finite element computer simulations as well as real experiment reveal anomalous optical response of the dielectric metasurface due to excitation of the dielectric resonances. Various electromagnetic resonances are considered in the dielectric cone. The metal-dielectric resonances, which are excited between metal nanoparticles and dielectric cones, are also considered. The resonance local electric field can be much larger than the field in the usual surface plasmon resonances. To investigate local electric field the signal molecules are deposited on the metal nanoparticles. We demonstrate enhancement of the electromagnetic field and Raman signal from the complex of DTNB acid molecules and gold nanoparticles, which are distributed over the metasurface. The metasurfaces composed from the dielectric resonators can have quasi-continuous spectrum and serve as an efficient SERS substrates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA