Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(2): e0263135, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35180237

RESUMO

Creation of artificial forest plantations on a global scale is one of the ways to mitigate the negative effects of climate change on ecosystems, at the same time providing soil protection from erosion, regulation of the hydrological regime and carbon sequestration in soils of different natural and climatic zones. However, the change of the dominant plant community cause significant ecosystem changes, reflecting at the structure and functioning of the soil microbial complex as well. The shifts in prokaryotic community of the meadow soil resulting from the conversion of the native meadow (further grassland) phytocenosis to the artificial forest plantations was investigated with the use of NGS sequencing technology and metabarcoding approach-amplicon sequencing of V4 region of 16 S rRNA (performed on Illumina Miseq platform). The identified shifts in taxonomic structure and diversity may be the result of changes in the physic-chemical conditions of soils and, on the other hand, may serve as indicators of such changes. Cultivation of larch led to an increase in the diversity of the prokaryotic community and its stratification by depth. The acidifying effect of larch manifested itself in an increase in the proportion and diversity of acidobacteria, in the abundance of oligotrophic microorganisms of phyla Chloroflexi, Firmicutes, and a simultaneous comparative decrease in the bacteria of Verrucomicrobia phylum, alphaproteobacteria of or. Rhizobiales and Burkholderiales. The absence of clearly expressed dominants in the prokaryotic community, as well as a significant increase in alpha-diversity indices, compared with the control plot of native mountain-meadow soil under grassland vegetation, suggests a transitional nature of the soil ecosystem of artificial forest plantations.


Assuntos
Bactérias/classificação , Bactérias/genética , Florestas , Pradaria , Larix/crescimento & desenvolvimento , Microbiologia do Solo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Filogenia , RNA Ribossômico 16S/genética , Solo/química
2.
Microorganisms ; 9(5)2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-34064848

RESUMO

Microbial biodiversity parameters for tropical rainforests remain poorly understood. Whilst the soil microbiome accounts up to 95% of the total diversity of microorganisms in terrestrial ecosystems, the microbiome of suspended soils formed by vascular epiphytes remains completely unexplored. Samples of ground and suspended soils were collected in Cat Tien National Park, southern Vietnam. DNA extraction and sequencing were performed, and libraries of 16s rDNA gene sequences were analyzed. Alpha diversity indices of the microorganisms were the highest in the forest ground soil. In general, the microbiological diversity of all the soil types was found to be similar at the phylum level. Taxonomic composition of the bacterial communities in the suspended soils of plants from the same species are not closer than the taxonomic compositions of the communities in the suspended soils of different plant species. However, the beta diversity analysis revealed significant differences in the movement of mineral elements in terrestrial versus suspended soils. Our data showed that the suspended soils associated with vascular epiphytes were a depository of unique microbiological biodiversity. A contributing factor was the presence of large amounts of organic matter in the suspended soils-deposits collected by the epiphytes-which would have been degraded by termites if it had reached the ground. Further, the nutrient content of the suspended soils was prime for soil respiration activity and taxonomic microbial community biodiversity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...