Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Insect Sci ; 30(3): 857-866, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36269128

RESUMO

Damage to plant communities imposed by insect herbivores generally decreases from low to high latitudes. This decrease is routinely attributed to declines in herbivore abundance and/or diversity, whereas latitudinal changes in per capita food consumption remain virtually unknown. Here, we tested the hypothesis that the lifetime food consumption by a herbivore individual decreases from low to high latitudes due to a temperature-driven decrease in metabolic expenses. From 2016 to 2019, we explored latitudinal changes in multiple characteristics of linear (gallery) mines made by larvae of the pygmy moth, Stigmella lapponica, in leaves of downy birch, Betula pubescens. The mined leaves were larger than intact leaves at the southern end of our latitudinal gradient (at 60°N) but smaller than intact leaves at its northern end (at 69°N), suggesting that female oviposition preference changes with latitude. No latitudinal changes were observed in larval size, mine length or area, and in per capita food consumption, but the larval feeding efficiency (quantified as the ratio between larval size and mine size) increased with latitude. Consequently, S. lapponica larvae consumed less foliar biomass at higher latitudes than at lower latitudes to reach the same size. Based on space-for-time substitution, we suggest that climate warming will increase metabolic expenses of insect herbivores with uncertain consequences for plant-herbivore interactions.


Assuntos
Mariposas , Taiga , Animais , Betula , Insetos , Larva , Herbivoria , Folhas de Planta
2.
Ecology ; 104(3): e3943, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36477626

RESUMO

Models mimicking prey organisms are increasingly used in ecological studies, including testing fundamental ecological and evolutionary theories. The general consensus is that predation risk estimated on artificial models may not quantitatively correspond to predation pressure on live prey, but it still can be used in various comparisons. We tested whether the use of live and artificial prey reveals the same patterns of variation in predation risk. We exposed live prey (blowfly larvae and puparia) and plasticine models of blowfly puparia in two boreal forest sites, both openly and in ant- and bird-exclusion treatments, and we quantified attacks by both avian and invertebrate predators. Bird attack rates were always higher on live puparia than on their plasticine models, but the magnitude of this difference declined from 8.4-fold in early summer to 2-fold in mid- and late-summer. We attribute these changes to different responses to prey by experienced adult birds that dominate the bird communities in early summer versus explorative juvenile birds that are abundant later in the season. Invertebrate daily predation rates on maggots decreased from 56% in early summer to 28% in late summer, but invertebrate attacks on plasticine models showed no seasonal changes. Overall, invertebrate predation on maggots was 67-fold greater than their predation on models. Observations showed that wood ants did not attack plasticine models and did not leave on them any damage marks. Estimates based on artificial prey indicate a much greater role of bird predation than invertebrate predation, while estimates based on live prey suggest the opposite pattern. Thus, using live and artificial prey may lead to different conclusions about relative importance of different predator groups in a locality. Moreover, for both avian and invertebrate predators, predation risk based on artificial and live prey shows different seasonal changes and may potentially demonstrate different spatial patterns.


Assuntos
Invertebrados , Comportamento Predatório , Animais , Comportamento Predatório/fisiologia , Insetos , Aves/fisiologia , Larva
3.
Insects ; 13(12)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36555034

RESUMO

Alarming reports on the rapid decline of insects during the past decades call for the exploration of potential drivers of this process. Here, we test the hypothesis that the overall abundance and diversity of moths and butterflies (Lepidoptera) decrease under the impact of industrial pollution in the fragile arctic environment. For this purpose, experienced collectors netted adult Lepidoptera at five tundra sites located 0.5 to 45.3 km from the ore-roasting plant in Zapolyarnyy and at five forest sites located 1.4 to 37.8 km from the copper-nickel smelter at Nikel, in the Murmansk region of Russia. The analysis of the 100 samples collected from 2003 to 2008 and containing 2312 individuals of 122 species revealed that the diversity of Lepidoptera declined significantly near both of these polluters due to both decreases in species richness and changes in the abundance of individual species, whereas the overall abundance of moths and butterflies was independent of the pollution load. These patterns did not differ between Nikel and Zapolyarnyy, and they were consistent with patterns previously found near the copper-nickel smelter at Monchegorsk. The abundances of Lepidoptera species showed variable changes along pollution gradients, from significantly negative to significantly positive, but individual species showed similar density changes around these three polluters. Disproportional increases in the abundance of a few pollution-tolerant species change the community structure and explain why the overall abundance of moths and butterflies does not decline even in localities experiencing extreme loads of sulphur dioxide and heavy metals.

4.
Ecol Evol ; 12(11): e9468, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36349250

RESUMO

Current theory predicts that the intensity of biotic interactions, particularly herbivory, decreases with increasing latitude and elevation. However, recent studies have revealed substantial variation in both the latitudinal and elevational patterns of herbivory. This variation is often attributed to differences in study design and the type of data collected by different researchers. Here, we used a similar sampling protocol along elevational gradients in six mountain ranges, located at different latitudes within temperate Eurasia, to uncover the sources of variation in elevational patterns in insect herbivory on woody plant leaves. We discovered a considerable variation in elevational patterns among different mountain ranges; nevertheless, herbivory generally decreased with increasing elevation at both the community-wide and individual plant species levels. This decrease was mostly due to openly living defoliators, whereas no significant association was detected between herbivory and elevation among insects living within plant tissues (i.e., miners and gallers). The elevational decrease in herbivory was significant for deciduous plants but not for evergreen plants, and for tall plants but not for low-stature plants. The community-wide herbivory increased with increases in both specific leaf area and leaf size. The strength of the negative correlation between herbivory and elevation increased from lower to higher latitudes. We conclude that despite the predicted overall decrease with elevation, elevational gradients in herbivory demonstrate considerable variation, and this variation is mostly associated with herbivore feeding habits, some plant traits, and latitude of the mountain range.

5.
Ecol Lett ; 25(9): 2076-2087, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35950788

RESUMO

The premise that the intensity of biotic interactions decreases with increasing latitudes and elevations is broadly accepted; however, whether these geographical patterns can be explained within a common theoretical framework remains unclear. Our goal was to identify the general pattern of elevational changes in trophic interactions and to explore the sources of variation among the outcomes of individual studies. Meta-analysis of 226 effect sizes calculated from 134 publications demonstrated a significant but interaction-specific decrease in the intensity of herbivory, carnivory and parasitism with increasing elevation. Nevertheless, this decrease was not significant at high latitudes and for interactions involving endothermic organisms, for herbivore outbreaks or for herbivores living within plant tissues. Herbivory similarly declined with increases in latitude and elevation, whereas carnivory showed a fivefold stronger decrease with elevation than with latitude and parasitism increased with latitude but decreased with elevation. Thus, although these gradients share a general pattern and several sources of variation in trophic interaction intensity, we discovered important dissimilarities, indicating that elevational and latitudinal changes in these interactions are partly driven by different factors. We conclude that the scope of the latitudinal biotic interaction hypothesis cannot be extended to incorporate elevational gradients.


Assuntos
Herbivoria , Plantas
6.
Sci Total Environ ; 838(Pt 1): 155800, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35550902

RESUMO

Environmental pollution is one of the major drivers of the present-day decline in global biodiversity. However, the links between the effects of industrial pollution on insect communities and the underlying species-specific responses remain poorly understood. We explored the spatial pattern in insect communities by analysing 581 samples of moths and butterflies (containing 25,628 individuals of 345 species) collected along a strong pollution gradient in subarctic Russia, and we recorded temporal changes in these communities during the pollution decline that occurred from 1992 to 2006. In the 1990s, the diversity of the Lepidoptera community was positively correlated with the distance from the copper-nickel smelter at Monchegorsk. The overall abundance of Lepidoptera did not change along the pollution gradient, although the abundance of many species decreased with increasing pollution. The responses of each individual species to pollution were associated with its life history traits. The abundances of monophagous species that fed inside live plant tissues and hibernated as imagoes or pupae were not affected by pollution, whereas the abundances of oligophagous and polyphagous species that fed externally on plants and hibernated as larvae generally declined near the smelter. Substantial decreases in aerial emissions from the smelter between 1992 and 2006 resulted in an increase in the diversity of moths and butterflies in severely polluted habitats, whereas their overall abundance did not change. This recovery of the Lepidoptera community occurred due to the reappearance of rare species that had been previously extirpated by pollution and was observed despite the lack of any signs of recovery of the vegetation in the heavily polluted sites. We conclude that the recovery trajectories of insect communities following emission control can be predicted from studies of their changes along spatial pollution gradients by using space-for-time substitution.


Assuntos
Borboletas , Mariposas , Animais , Biodiversidade , Ecossistema , Poluição Ambiental , Insetos/fisiologia , Mariposas/fisiologia
7.
Ecol Evol ; 12(1): e8537, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35127040

RESUMO

Current theory holds that the intensity of biotic interactions decreases with increases in latitude and elevation; however, empirical data demonstrate great variation in the direction, strength, and shape of elevational changes in herbivory. The latitudinal position of mountains may be one important source of this variation, but the acute shortage of data from polar mountains hampers exploration of latitude effects on elevational changes in herbivory. Here, we reduce this knowledge gap by exploring six elevation gradients located in three Arctic mountain ranges to test the prediction that a decrease in herbivory occurs with increasing elevation from forest to alpine tundra. Across the 10 most abundant evergreen and deciduous woody plant species, relative losses of foliage to insect herbivores were 2.2-fold greater at the highest elevations (alpine tundra) than in mid-elevation birch woodlands or low-elevation coniferous forests. Plant quality for herbivores (quantified by specific leaf area) significantly decreased with elevation across all studied species, indicating that bottom-up factors were unlikely to shape the observed pattern in herbivory. An experiment with open-top chambers established at different elevations showed that even a slight increase in ambient temperature enhances herbivory in Arctic mountains. Therefore, we suggest that the discovered increase in herbivory with elevation is explained by higher temperatures at the soil surface in open habitats above the tree line compared with forests at lower elevations. This explanation is supported by the significant difference in elevational changes in herbivory between low and tall plants: herbivory on low shrubs increased fourfold from forest to alpine sites, while herbivory on trees and tall shrubs did not change with elevation. We suggest that an increase in herbivory with an increase in elevation is typical for high-latitude mountains, where inverse temperature gradients, especially at the soil surface, are common. Verification of this hypothesis requires further studies of elevational patterns in herbivory at high latitudes.

8.
Insects ; 13(1)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35055937

RESUMO

Latitudinal gradients allow insights into the factors that shape ecosystem structure and delimit ecosystem processes, particularly climate. We asked whether the biomass and diversity of soil macrofauna in boreal forests change systematically along a latitudinal gradient spanning from 60° N to 69° N. Invertebrates (3697 individuals) were extracted from 400 soil samples (20 × 20 cm, 30 cm depth) collected at ten sites in 2015-2016 and then weighed and identified. We discovered 265 species living in soil and on the soil surface; their average density was 0.486 g d·w·m-2. The species-level diversity decreased from low to high latitudes. The biomass of soil macrofauna showed no latitudinal changes in early summer but decreased towards the north in late summer. This variation among study sites was associated with the decrease in mean annual temperature by ca 5 °C and with variation in fine root biomass. The biomass of herbivores and fungivores decreased towards the north, whereas the biomass of detritivores and predators showed no significant latitudinal changes. This variation in latitudinal biomass patterns among the soil macrofauna feeding guilds suggests that these guilds may respond differently to climate change, with poorly understood consequences for ecosystem structure and functions.

9.
Insect Sci ; 29(3): 942-955, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34432950

RESUMO

Color polymorphism offers rich opportunities for studying the eco-evolutionary mechanisms that drive the adaptations of local populations to heterogeneous and changing environments. We explored the color morph diversity and composition in a Chrysomela lapponica leaf beetle across its entire distribution range to test the hypothesis that environmental and climatic variables shape spatiotemporal variation in the phenotypic structure of a polymorphic species. We obtained information on 13 617 specimens of this beetle from museums, private collections, and websites. These specimens (collected from 1830-2020) originated from 959 localities spanning 33° latitude, 178° longitude, and 4200 m altitude. We classified the beetles into five color morphs and searched for environmental factors that could explain the variation in the level of polymorphism (quantified by the Shannon diversity index) and in the relative frequencies of individual color morphs. The highest level of polymorphism was found at high latitudes and altitudes. The color morphs differed in their climatic requirements; composition of colour morphs was independent of the geographic distance that separated populations but changed with collection year, longitude, mean July temperature and between-year temperature fluctuations. The proportion of melanic beetles, in line with the thermal melanism hypothesis, increased with increasing latitude and altitude and decreased with increasing climate seasonality. Melanic morph frequencies also declined during the past century, but only at high latitudes and altitudes where recent climate warming was especially strong. The observed patterns suggest that color polymorphism is especially advantageous for populations inhabiting unpredictable environments, presumably due to the different climatic requirements of coexisting color morphs.


Assuntos
Besouros , Aclimatação , Altitude , Animais , Evolução Biológica , Besouros/genética , Cor , Temperatura
10.
Oecologia ; 196(4): 1017-1026, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34322748

RESUMO

The direction and strength of selection for prey colouration by predators vary in space and time and depend on the composition of the predator community. We tested the hypothesis that bird selection pressure on prey colouration changes through the season due to changes in the proportion of naïve juvenile individuals in the bird community, because naïve and educated birds differ in their responses to prey colours. Bird predation on caterpillar-shaped plasticine models in two boreal forest sites increased sevenfold from early summer to mid-summer, and the time of this increase coincides with the fledging of juvenile birds. In early summer, cryptic (black and green) models were attacked at fivefold higher rates compared with conspicuous (red and yellow) models. By contrast, starting from fledging time, cryptic and conspicuous models were attacked at similar rates, hinting at a lower selectivity by naïve juvenile birds compared with educated adult birds. Cryptic models exposed in a group together with conspicuous models were attacked by birds at a threefold lower rate than cryptic models exposed singly, thus supporting the aposematic commensalism hypothesis. However, this effect was not observed in mid- and late summer, presumably due to the lack of avoidance of conspicuous prey by the juvenile birds. We conclude that selection pressure on prey colouration weakens considerably when naïve birds dominate in the community, because the survival advantages of aposematic colouration are temporarily lost for both the conspicuous and their neighbouring cryptic prey.


Assuntos
Aves , Lepidópteros , Animais , Humanos , Comportamento Predatório , Estações do Ano
11.
Ecol Lett ; 24(11): 2506-2520, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34322961

RESUMO

The Latitudinal Biotic Interaction Hypothesis (LBIH) states that the intensity of biotic interactions increases from high to low latitudes. This hypothesis, which may partly explain latitudinal gradients in biodiversity, remains hotly debated, largely due to variable outcomes of published studies. We used meta-analysis to identify the scope of the LBIH in terrestrial ecosystems. For this purpose, we explored the sources of variation in the strength of latitudinal changes in herbivory, carnivory and parasitism (119 publications) and compared these gradients with gradients in the diversity of the respective groups of animals (102 publications). Overall, both herbivory and carnivory decreased towards the poles, while parasitism increased. The latitudinal gradient in herbivory and carnivory was threefold stronger above 50-60° than at lower latitudes and was significant due to interactions involving ectothermic consumers, studies using standardised prey (i.e. prey lacking local anti-predator adaptations) and studies aimed at testing LBIH. The poleward decrease in biodiversity did not differ between ectothermic and endothermic animals or among climate zones and was fourfold stronger than decrease in herbivory and carnivory. The discovered differences between the gradients in biotic interactions and biodiversity suggest that these two global macroecological patterns are likely shaped by different factors.


Assuntos
Ecossistema , Herbivoria , Animais , Biodiversidade , Clima
12.
Ann Bot ; 127(7): 865-873, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-33556168

RESUMO

BACKGROUND AND AIMS: Herbaria were recently advertised as reliable sources of information regarding historical changes in plant traits and biotic interactions. To justify the use of herbaria in global change research, we asked whether the characteristics of herbarium specimens have changed during the past centuries and whether these changes were due to shifts in plant collection practices. METHODS: We measured nine characteristics from 515 herbarium specimens of common European trees and large shrubs collected from 1558 to 2016. We asked botanists to rank these specimens by their scientific quality, and asked artists to rank these specimens by their beauty. KEY RESULTS: Eight of 11 assessed characteristics of herbarium specimens changed significantly during the study period. The average number of leaves in plant specimens increased 3-fold, whereas the quality of specimen preparation decreased. Leaf size negatively correlated with leaf number in specimens in both among-species and within-species analyses. The proportion of herbarium sheets containing plant reproductive structures peaked in the 1850s. The scientific value of herbarium specimens increased until the 1700s, but then did not change, whereas their aesthetic value showed no systematic trends. CONCLUSIONS: Our findings strongly support the hypothesis that many characteristics of herbarium specimens have changed systematically and substantially from the 16th to 21st centuries due to changes in plant collection and preservation practices. These changes may both create patterns which could be erroneously attributed to environmental changes and obscure historical trends in plant traits. The utmost care ought to be taken to guard against the possibility of misinterpretation of data obtained from herbarium specimens. We recommend that directional changes in characters of herbarium specimens which occurred during the past 150‒200 years, primarily in specimen size and in the presence of reproductive structures, are accounted for when searching for the effects of past environmental changes on plant traits.


Assuntos
Plantas , Árvores , Folhas de Planta
13.
Sci Rep ; 11(1): 226, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420300

RESUMO

The properties of the human mind affect the quality of scientific knowledge through the insertion of unconscious biases during the research process. These biases frequently cause overestimation of the effects under study, thereby violating the reproducibility of the research and potentially leading to incorrect conclusions in subsequent research syntheses. We explored the level of knowledge about biases and attitudes to this problem by analysing 308 responses of ecology scientists to a specifically developed survey. We show that knowledge about biases and attitude towards biases depend on the scientist's career stage, gender and affiliation country. Early career scientists are more concerned about biases, know more about measures to avoid biases, and twice more frequently have learned about biases from their university courses when compared with senior scientists. The respondents believe that their own studies are less prone to biases than are studies by other scientists, which hampers the control of biases in one's own research. We conclude that education about biases is necessary, but not yet sufficient, to avoid biases because the unconscious origin of biases necessitates external intervention to combat them. Obligatory reporting of measures taken against biases in all relevant manuscripts will likely enhance the reproducibility of scientific results.

14.
Insects ; 11(12)2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33265915

RESUMO

The life histories of many soil-dwelling invertebrates remain poorly studied. The larvae of two click beetle species, Athous subfuscus and Dalopius marginatus, which are most abundant in European boreal forests, are both classified as omnivorous and are included in lists of root-damaging pests. Nevertheless, we are not aware of any direct proof of their ability (or inability) to consume plant roots. In this study, we asked whether these larvae actually feed on the roots of forest plants in the absence of other food sources. Live roots of boreal forest plants, including trees (Betula pubescens, Picea abies and Pinus sylvestris) and grass (Deschampsia flexuosa), were offered to click beetle larvae in a two-month microcosm experiment. The weight of roots placed in vials with the wireworms did not decrease, indicating that the larvae of these click beetle species did not feed on live roots, even in the absence of other food sources. This suggests that the feeding niches of A. subfuscus and D. marginatus larvae are narrower than previously thought and do not include live plant tissues. Therefore, these click beetle species should be excluded from the lists of forest pests damaging tree roots.

15.
J Anim Ecol ; 89(12): 2946-2957, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32961580

RESUMO

The latitudinal biotic interaction hypothesis (LBIH) predicts that the strength of various biotic interactions decreases from low to high latitudes. Inconsistency between studies testing this hypothesis may result from variations among different types of interactions and among study systems. Therefore, exploration of multiple interactions within one system would help to disentangle latitudinal patterns across individual interactions and to evaluate latitudinal changes in the overall impact of enemies on prey. We tested the prediction based on the LBIH that the pressure of natural enemies on herbivorous insects decreases with increase in latitude across the boreal forest zone. We also asked whether the impacts of major groups of these enemies exhibit similar latitudinal patterns and whether these patterns are consistent across study years. In 10 forest sites located from 60°N to 69°N in Northern Europe, each summer, from 2016 to 2019, we measured (a) mortality of three groups of leafmining insects caused by birds, ants, parasitoids and unknown factors, (b) bird attacks on caterpillar-shaped plasticine models and (c) birch foliar damage caused by defoliators and leafminers. Latitudinal patterns in both insect herbivory on birch and top-down pressure on herbivorous insects varied considerably and inconsistently among the four study years, so that only some of the year-specific correlations with latitude were statistically significant. Nevertheless, meta-analysis combining correlations across years, preys and enemies revealed general decreases in predation by birds (on both natural and model prey) and ants, but an increase in parasitism rates, from low to high latitudes. We found that the direction of latitudinal changes in the strength of biotic interactions was interaction-specific: predation and herbivory supported LBIH, whereas parasitism exhibited an opposite trend. Consequently, the overall impact of natural enemies on herbivorous insects did not change with latitude and was therefore an unlikely reason for the poleward decrease in herbivory observed in our gradient. Considerable among-year variation in the strength of the latitudinal patterns in all the studied interactions suggests that this variation is a widespread phenomenon.


Assuntos
Herbivoria , Comportamento Predatório , Animais , Europa (Continente) , Insetos , Taiga
16.
Sci Rep ; 10(1): 12298, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32704145

RESUMO

Information regarding plant damage by insects in the past is essential to explore impacts of climate change on herbivory. We asked whether insect herbivory measured from herbarium specimens reflects the levels of herbivory occurring in nature at the time of herbarium sampling. We compared herbivory measurements between herbarium specimens collected by botany students and ecological samples collected simultaneously by the authors by a method that minimized unconscious biases, and asked herbarium curators to select one of two plant specimens, which differed in leaf damage, for their collections. Both collectors and curators generally preferred specimens with lesser leaf damage, but the strength of this preference varied among persons. In addition, the differences in measured leaf damage between ecological samples and herbarium specimens varied among plant species and increased with the increase in field herbivory. Consequently, leaf damage in herbarium specimens did not correlate with the actual level of herbivory. We conclude that studies of herbarium specimens produce biased information on past levels of herbivory, because leaf damage measured from herbarium specimens not only underestimates field herbivory, but it is not proportional to the level of damage occurring in nature due to multiple factors that cannot be controlled in data analysis.


Assuntos
Herbivoria , Insetos , Plantas , Animais , Mudança Climática , Ecossistema , Florestas , Folhas de Planta , Madeira
17.
Oecologia ; 193(1): 167-176, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32314043

RESUMO

Ontogenetic changes in herbivory are generally not consistent with ontogenetic changes in defensive traits of woody plants. This inconsistency suggests that other factors may affect ontogenetic trajectories in herbivory. We tested the hypothesis that top-down factors contribute to differences in foliar losses to insects between juvenile and mature trees in tropical and boreal forests. We used artificial caterpillars made of modelling clay to compare predation rates between saplings and mature trees of two common forest species, Siparuna guianensis in Brazil (tropical site) and Betula pubescens in Finland (boreal site). Leaf area losses to chewing insects in saplings were 2.5-fold higher than in mature trees in both species. Physical plant defences (measured as specific leaf area, SLA) did not differ between saplings and mature trees in the boreal forest, whereas in the tropical forest, SLA was greater in saplings than in mature trees. Attack rates on the model prey by birds were higher in the boreal forest, whereas attack rates by arthropod predators were higher in the tropical forest. Overall, predation rates on model prey were consistently higher on mature trees than on saplings at both sites, but in the boreal site, this pattern was primarily driven by birds, whereas in the tropical site, it was primarily driven by arthropod predators. We conclude that the effect of predation on herbivorous insects may considerably contribute to ontogenetic differences in herbivory, but the relative roles of different predatory groups and of top-down and bottom-up factors may vary between environments.


Assuntos
Herbivoria , Árvores , Animais , Brasil , Finlândia , Florestas , Insetos , Folhas de Planta
18.
Sci Total Environ ; 673: 237-244, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-30991315

RESUMO

Intraspecific diversity buffers populations from deleterious impacts of environmental change. Nevertheless, the consequences of climate warming for phenotypic and genetic diversity within populations and species remain poorly understood. The goal of our study was to explore among-year variations in the phenotypic structure of populations and their relationships with climate variability and population dynamics. We analysed multiyear (1992-2018) data on colour morph frequencies within populations of the leaf beetle, Chrysomela lapponica, from multiple sites in the Kola Peninsula (northwestern Russia). We observed a strong decline in the proportion of dark (melanic) morphs among overwintered beetles during the study period; this decline was consistent across all study sites. Using model selection procedures, we explained declines in the dark morph of overwintered beetles by increases in minimum spring (May-June) daily temperatures. Other climatic characteristics, pollution load, and beetle population density were unrelated to variation in colour morph frequencies. Among newly emerged beetles (August), dark morph frequencies also decreased with an increase in average spring temperatures, but were unrelated to mean temperatures during the larval development period (July). These results suggest that the two-fold decline in dark morph frequencies during the past 26 years has been driven by the 2.5 °C increase in spring temperatures, most likely because dark males lose the mating advantages over light males that they obtain during cold springs. The continued loss of dark morphs and related decrease in within-population diversity may render leaf beetle populations more vulnerable to future environmental changes, in particular to those expressed in extreme weather fluctuations. Our study demonstrates that declines in within-population diversity are already underway in subarctic areas, and that these declines are likely driven by climate warming.


Assuntos
Mudança Climática , Besouros/fisiologia , Aquecimento Global , Melaninas/análise , Animais , Cor , Monitoramento Ambiental , Dinâmica Populacional , Federação Russa
19.
Ecol Evol ; 9(24): 14273-14285, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31938518

RESUMO

The strength of biotic interactions is generally thought to increase toward the equator, but support for this hypothesis is contradictory. We explored whether predator attacks on artificial prey of eight different colors vary among climates and whether this variation affects the detection of latitudinal patterns in predation. Bird attack rates negatively correlated with model luminance in cold and temperate environments, but not in tropical environments. Bird predation on black and on white (extremes in luminance) models demonstrated different latitudinal patterns, presumably due to differences in prey conspicuousness between habitats with different light regimes. When attacks on models of all colors were combined, arthropod predation decreased, whereas bird predation increased with increasing latitude. We conclude that selection for prey coloration may vary geographically and according to predator identity, and that the importance of different predators may show contrasting patterns, thus weakening the overall latitudinal trend in top-down control of herbivorous insects.

20.
J Therm Biol ; 74: 100-109, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29801614

RESUMO

We asked whether ambient temperatures can affect morph frequencies within a subarctic population of the polymorphic leaf beetle Chrysomela lapponica through thermal melanism and/or developmental plasticity. Body temperature increased faster in beetles of dark morph than in beetles of light morph under exposure to artificial irradiation. Dark males ran faster than light males in both field and laboratory experiments, and this difference decreased with increasing ambient air temperature, from significant at 10 °C to non-significant at 20 °C and 26 °C. On cold days (6-14 °C), significantly more dark males than light males were found on their host plants in copula (40.8% and 27.3% respectively); on warm days (15-22 °C) this difference disappeared. Light females produced twice as many eggs as dark females; this difference did not depend on the ambient temperature. The proportion of dark morphs in the progenies of pairs with one dark parent was twice as high as that in the progenies of pairs in which both parents were light, and this proportion was greater when larvae developed at low (10 and 15 °C) than at high (20 and 25 °C) temperatures. We conclude that low temperatures may increase the frequencies of dark morphs in C. lapponica populations due to both the mating advantages of dark males over light males and developmental plasticity. Variation in frequencies of low-fecund dark morphs in the population, caused by among-year differences in temperature together with density-dependent selection, may contribute to the evolutionary dynamics of the colour polymorphism and may influence abundance fluctuations in these leaf beetle populations.


Assuntos
Regulação da Temperatura Corporal , Besouros/crescimento & desenvolvimento , Fenótipo , Pigmentação , Temperatura , Animais , Temperatura Corporal , Cor , Feminino , Masculino , Melaninas , Atividade Motora
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...