Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Mol Biosci ; 9: 907439, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35847984

RESUMO

Functional, biochemical, and preliminary structural properties are reported for three glycoside hydrolases of the recently described glycoside hydrolase (GH) family 159. The genes were cloned from the genomic sequences of different Caldicellulosiruptor strains. This study extends the spectrum of functions of GH159 enzymes. The only activity previously reported for GH159 was hydrolytic activity on ß-galactofuranosides. Activity screening using a set of para-nitrophenyl (pNP) glycosides suggested additional arabinosidase activity on substrates with arabinosyl residues, which has not been previously reported for members of GH159. Even though the thermophilic enzymes investigated-Cs_Gaf159A, Ch_Gaf159A, and Ck_Gaf159A-cleaved pNP-α-l-arabinofuranoside, they were only weakly active on arabinogalactan, and they did not cleave arabinose from arabinan, arabinoxylan, or gum arabic. However, the enzymes were able to hydrolyze the α-1,3-linkage in different arabinoxylan-derived oligosaccharides (AXOS) with arabinosylated xylose at the non-reducing end (A3X, A2,3XX), suggesting their role in the intracellular hydrolysis of oligosaccharides. Crystallization and structural analysis of the apo form of one of the Caldicellulosiruptor enzymes, Ch_Gaf159A, enabled the elucidation of the first 3D structure of a GH159 member. This work revealed a five-bladed ß-propeller structure for GH159 enzymes. The 3D structure and its substrate-binding pocket also provides an explanation at the molecular level for the observed exo-activity of the enzyme. Furthermore, the structural data enabled the prediction of the catalytic amino acids. This was supported by the complete inactivation by mutation of residues D19, D142, and E190 of Ch_Gaf159A.

2.
Appl Microbiol Biotechnol ; 106(4): 1493-1509, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35129654

RESUMO

In this study, we compared the properties and structures of three fungal GH12 enzymes: the strict endoglucanase Bgh12A and the xyloglucanase Xgh12B from Aspergillus cervinus, and the endoglucanase Egh12 from Thielavia terrestris combining activity on linear ß-glucan and branched xyloglucan. Egh12 from T. terrestris was produced in Pichia pastoris, purified, and characterized as a thermostable enzyme with maximal activity at 70 ºC and a half-life time of 138 min at 65 °C. We for the first time demonstrated that the GH12 endoglucanases Egh12 and Bgh12A, but not the strict xyloglucanase Xgh12B, hydrolyzed (1,3)-ß-linkages in (1,3;1,4)-ß-D-glucooligosaccharides and had transglycosylase activity on (1,3)-ß-D-glucooligosaccharides. Phylogenetic analysis indicated that Egh12 from T. terrestris and Bgh12A from A. cervinus are more related than Bgh12A and Xgh12B isolated from one strain. The X-ray structure of Bgh12A was determined with 2.17 Å resolution and compared with 3D-homology models of Egh12 and Xgh12B. The enzymes have a ß-jelly roll structure with a catalytic cleft running across the protein. Comparative analysis and a docking study demonstrated the importance of endoglucanase-specific loop 1 partly covering the catalytic cleft for correct placement of the linear substrates. Variability in substrate specificity between the GH12 endoglucanases is determined by non-conservative residues in structural loops framing the catalytic cleft. A residue responsible for the thermostability of Egh12 was predicted. The key structural elements and residues described in this study may serve as potential targets for modification aimed at the improvement of enzymatic properties. KEY POINTS: • Thermostable endoglucanase Egh12 from T. terrestris was produced in P. pastoris, purified, and characterized • The X-ray structure of GH12 endoglucanase Bgh12A from A. cervinus was resolved • GH12 endoglucanases, but not GH12 xyloglucanases, hydrolyze (1,3)-ß-linkages in (1,3;1,4)-ß-D-glucooligosaccharides.


Assuntos
Celulase , Sordariales , Aspergillus , Celulase/metabolismo , Filogenia , Sordariales/metabolismo , Especificidade por Substrato
3.
Int J Syst Evol Microbiol ; 71(11)2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34731077

RESUMO

Strain MD1T is an anaerobic, Gram-stain-negative bacterium isolated from a lab-scale biogas fermenter fed with maize silage. It has a rod-shaped morphology with peritrichously arranged appendages and forms long chains of cells and coccoid structures. The colonies of MD1T were white, circular, slightly convex and had a smooth rim. The isolate is mesophilic, displaying growth between 25 and 45 °C with an optimum at 40 °C. It grew at pH values of pH 6.7-8.2 (optimum, pH 7.1) and tolerated the addition of up to 1.5% (w/v) NaCl to the medium. The main cellular fatty acids of MD1T are C14:0 DMA and C16:0. Strain MD1T fermented xylose, arabinose, glucose, galactose, cellobiose, maltose, maltodextrin10, lactose starch, and xylan, producing mainly 2-propanol and acetic acid. The genome of the organism has a total length of 4163427 bp with a G+C content of 38.5 mol%. The two closest relatives to MD1T are Mobilitalea sibirica P3M-3T and Anaerotaenia torta FH052T with 96.44 or 95.8 % 16S rRNA gene sequence similarity and POCP values of 46.58 and 50.58%, respectively. As MD1T showed saccharolytic and xylanolytic properties, it may play an important role in the biogas fermentation process. Closely related variants of MD1T were also abundant in microbial communities involved in methanogenic fermentation. Based on morphological, phylogenetic and genomic data, the isolated strain can be considered as representing a novel genus in the family Lachnospiraceae, for which the name Variimorphobacter saccharofermentans gen. nov., sp. nov. (type strain MD1T=DSM 110715T=JCM 39125T) is proposed.


Assuntos
Biocombustíveis , Clostridiales/classificação , Filogenia , Silagem/microbiologia , Zea mays , Técnicas de Tipagem Bacteriana , Composição de Bases , Biocombustíveis/microbiologia , Clostridiales/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , Fermentação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Zea mays/microbiologia
4.
Microbiol Resour Announc ; 10(13)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33795340

RESUMO

Mobilitalea sibirica strain P3M-3T is a strictly anaerobic, halotolerant, organotrophic bacterium of the family Lachnospiraceae that can utilize various plant-derived polysaccharides as its carbon source. The strain was originally isolated from a microbial mat in western Siberia (Russia). In this study, we present the draft genome sequence of M. sibirica P3M-3T based on Illumina paired-end sequencing.

5.
Microbiol Resour Announc ; 10(17)2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33927028

RESUMO

Clostridium beijerinckii strain mbf-VZ-132 was isolated from soil in Freising-Weihenstephan (Bavaria, Germany). The 16S rRNA gene sequence showed a 99.9% sequence identity to that of Clostridium diolis DSM 15410, which was recently reclassified as C. beijerinckii In this study, we present the draft genome sequence of C. beijerinckii mbf-VZ-132 based on PacBio sequencing.

6.
Appl Microbiol Biotechnol ; 105(4): 1461-1476, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33521846

RESUMO

The thermostable endo-processive xyloglucanase MtXgh74 from Myceliophthora thermophila was used to study the influence of aromatic amino acids in the catalytic cleft on the mode of action and the ability of enzyme to reduce xyloglucan viscosity. The enzyme derivative Mut I with mutations W64A/W67A in the "negative" subsites of the catalytic cleft resulted in a 5.5-fold increase of the Km value. Mut I produced oligosaccharides of various lengths in addition to xyloglucan building blocks. The W320A/W321A substitutions in the "positive" subsites of the mutated enzyme Mut II catalytic cleft increased the Km value 54-fold and resulted in an endo-dissociative mode of action. The ability of Mut II to reduce the viscosity of xyloglucan at 50 °C was much better than that of other MtXgh74 variants. Besides, Mut II efficiently reduced viscosity of a natural substrate, the pulp of xyloglucan-containing tamarind seed flour. The Km, Vmax, and kcat values and viscosity reduction ability of the enzyme derivative Mut III (W320A/W321A/G446Y) returned to levels close to that of MtXgh74. The pattern of xyloglucan hydrolysis by Mut III was typical for endo-processive xyloglucanases. The thermostability of Mut I and Mut II at 60 °C decreased significantly compared to the wild type, whereas the thermostability of Mut III at 60 °C restored almost to the MtXgh74-wt value. All mutants lost the ability to cleave the backbone of xyloglucan building blocks which was a characteristic of MtXgh74. Instead they acquired a low branch removing activity. Molecular dynamics simulations revealed the role of mutated amino acids in the complex action mechanism of GH74 enzymes. KEY POINTS: • Endo-processive mode of action of the xyloglucanase MtXgh74 was altered by rational design. • The endo-dissociative mutant Mut II (W320A/W321A) efficiently reduced XyG viscosity. • The substitutions W320A/W321A/G446Y in Mut III recovered the endo-processive mode. • Mut II can be used to reduce the viscosity of biomass slurries containing tamarind seed flour.


Assuntos
Glicosídeo Hidrolases , Xilanos , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Sordariales , Especificidade por Substrato , Viscosidade
7.
Microbiol Resour Announc ; 9(11)2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32165383

RESUMO

Paenibacillus polymyxa DSM 292 was originally isolated from soil in 1947 due to its ability to produce antibiotics. The low proteolytic properties of strain DSM 292 warrant its examination as a host for heterologous protein production. Here, we report the draft genome sequence of DSM 292 as established by Illumina MiSeq paired-end sequencing.

8.
Int J Syst Evol Microbiol ; 70(2): 1217-1223, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31793857

RESUMO

In this work, we succeeded in the isolation of a novel species out of a mesophilically operated biogas fermenter fed with maize silage. Strains GS7-6-2T, GS-7K2 and GS-0K3 were isolated from three individual enrichment cultures. 16S rRNA gene sequence comparisons indicated that the isolates had 100 % sequence identity and were most closely related to Anaerosphaera amininiphila WN036T, with which they shared a 16S rRNA gene sequence similarity of 93.1 %. As a representative, strain GS7-6-2T was further characterized. Strain GS7-6-2T was mesophilic with its growth optimum at 30 °C and a pH range from pH 5.5 to 9.5 (optimum, pH 6.0-8.5). Cells were spherical and sometimes arranged into short chains. Growth was possible with up to 3.6 % (w/v) NaCl, but best without additional NaCl. Strain GS7-6-2T produced butyric acid and acetic acid as main fermentation products while growing on GS2 medium. The major cellular fatty acids were C18 : 1ω7c, C16 : 0 and C16 : 1ω9c. The Gram-stain result was negative. The DNA G+C content was 32.8 mol%. Strain GS7-6-2T was able to ferment 16 (comprising four carbohydrates, five amino acids, four organic acids and three nucleotides) out of the 95 tested substrates. Due to the ecological, genetic and phenotypic differences from the most closely affiliated and validly named organism, A. amininiphila WN036T, the isolates represent a novel species within the genus Anaerosphaera, family Peptoniphilaceae, for which the name Anaerosphaera multitolerans sp. nov. is proposed. The type strain is GS7-6-2T (=DSM 107952T=CECT 9705T).


Assuntos
Biocombustíveis , Reatores Biológicos/microbiologia , Clostridiales/classificação , Filogenia , Silagem/microbiologia , Zea mays/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , Clostridiales/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , Fermentação , Alemanha , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
9.
Sci Rep ; 9(1): 15924, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31685873

RESUMO

Carbohydrate active enzymes are classified in databases based on sequence and structural similarity. However, their function can vary considerably within a similarity-based enzyme family, which makes biochemical characterisation indispensable to unravel their physiological role and to arrive at a meaningful annotation of the corresponding genes. In this study, we biochemically characterised the four related enzymes Tm_Ram106B, Tn_Ram106B, Cb_Ram106B and Ts_Ram106B from the thermophilic bacteria Thermotoga maritima MSB8, Thermotoga neapolitana Z2706-MC24, Caldicellulosiruptor bescii DSM 6725 and Thermoclostridium stercorarium DSM 8532, respectively, as α-L-rhamnosidases. Cobalt, nickel, manganese and magnesium ions stimulated while EDTA and EGTA inhibited all four enzymes. The kinetic parameters such as Km, Vmax and kcat were about average compared to other rhamnosidases. The enzymes were inhibited by rhamnose, with half-maximal inhibitory concentrations (IC50) between 5 mM and 8 mM. The α-L-rhamnosidases removed the terminal rhamnose moiety from the rutinoside in naringin, a natural flavonone glycoside. The Thermotoga sp. enzymes displayed the highest optimum temperatures and thermostabilities of all rhamnosidases reported to date. The four thermophilic and divalent ion-dependent rhamnosidases are the first biochemically characterised orthologous enzymes recently assigned to glycoside hydrolase family 106.


Assuntos
Proteínas de Bactérias/metabolismo , Clostridiales/enzimologia , Firmicutes/enzimologia , Glicosídeo Hidrolases/metabolismo , Thermotoga maritima/enzimologia , Thermotoga neapolitana/enzimologia , Proteínas de Bactérias/química , Caldicellulosiruptor , Clonagem Molecular , Cobalto/química , Cobalto/metabolismo , Ácido Edético/química , Ácido Edético/metabolismo , Flavanonas/metabolismo , Glicosídeo Hidrolases/química , Concentração de Íons de Hidrogênio , Concentração Inibidora 50 , Cinética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Ramnose/metabolismo , Especificidade por Substrato , Temperatura
10.
Int J Syst Evol Microbiol ; 69(11): 3567-3573, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31429816

RESUMO

In this work, the isolation and characterization of a novel anaerobic, mesophilic and cellulolytic bacterium is described. Comparative analysis of the almost-complete sequence of the 16S rRNA gene showed that the closest relatives were Hungateiclostridium straminisolvens CSK1T (97.53  %) and Hungateiclostridium thermocellum DSM 2360T (95.42  %). Due to physiological and phylogenetic differences from its closest relatives, a new species is proposed. Cells of N2K1T were observed to be rod-shaped, non-motile, spore-forming, Gram-stain-positive and able to adhere directly to cellulose fibre. Cellulolytic activity and optimal growth were observed at 45 °C and neutral pH (optimum, pH 7.5). Of all tested substrates, only filter paper (cellulose) and cellobiose were used for growth. Arabinose, fructose, glucose, lactose, mannitol, mannose, ribose, starch, sucrose, trehalose, xylan and xylose did not support growth. The main fermentation products were acetic acid and isopropanol. The major cellular fatty acids (>5 %) were C16 : 0iso, C16 : 0 DMA and C16 : 0. The type strain, N2K1T, was isolated from a mesophilically operated, lab-scale biogas fermenter fed with maize silage in Freising, Germany in 2017. The genome assembly of strain N2K1T is 4.04 Mbp with a DNA G+C content of 38.36 mol%. The name Hungateiclostridiummesophilum sp. nov. is proposed for the novel organism. Strain N2K1T (=DSM 107956T; =CECT 9704T) represents the type strain of Hungateiclostridiummesophilum sp. nov.


Assuntos
Biocombustíveis , Reatores Biológicos/microbiologia , Clostridiales/classificação , Filogenia , Silagem/microbiologia , Zea mays , Técnicas de Tipagem Bacteriana , Composição de Bases , Celulose/metabolismo , Clostridiales/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , Fermentação , Alemanha , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
11.
Appl Microbiol Biotechnol ; 103(18): 7553-7566, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31332485

RESUMO

In spite of intensive exploitation of aspergilli for the industrial production of carbohydrases, little is known about hydrolytic enzymes of fungi from the section Cervini. Novel glycoside hydrolases Bgh12A and Xgh12B from Aspergillus cervinus represent examples of divergent activities within one enzyme family and belong to the GH12 phylogenetic subgroup I (endo-(1,4)-ß-glucanases) and II (endo-xyloglucanases), respectively. The bgh12A and xgh12B genes were identified in the unsequenced genome of A. cervinus using primers designed for conservative regions of the corresponding subgroups and a genome walking approach. The recombinant enzymes were heterologously produced in Pichia pastoris, purified, and characterized. Bgh12A was an endo-(1,4)-ß-glucanase (EC 3.2.1.4) hydrolyzing the unbranched soluble ß-(1,4)-glucans and mixed linkage ß-(1,3;1,4)-D-glucans. Bgh12A exhibited maximum activity on barley ß-glucan (BBG), which amounted to 614 ± 30 U/mg of protein. The final products of BBG and lichenan hydrolysis were glucose, cellobiose, cellotriose, 4-O-ß-laminaribiosyl-glucose, and a range of higher mixed-linkage gluco-oligosaccharides. In contrast, the activity of endo-xyloglucanase Xgh12B (EC 3.2.1.151) was restricted to xyloglucan, with 542 ± 39 U/mg protein. The enzyme cleaved the (1,4)-ß-glycosidic bonds of the xyloglucan backbone at the unsubstituted glucose residues finally generating cellotetraose-based hepta-, octa, and nona-oligosaccharides. Bgh12A and Xgh12B had maximal activity at 55 °C, pH 5.0. At these conditions, the half-time of Xgh12B inactivation was 158 min, whereas the half-life of Bgh12A was 5 min. Recombinant P. pastoris strains produced up to 106 U/L of the target enzymes with at least 75% of recombinant protein in the total extracellular proteins. The Bgh12A and Xgh12B sequences show 43% identity. Strict differences in substrate specificity of Bgh12A and Xgh12B were in congruence with the presence of subgroup-specific structural loops and substrate-binding aromatic residues in the catalytic cleft of the enzymes. Individual composition of aromatic residues in the catalytic cleft defined variability in substrate selectivity within GH12 subgroups I and II.


Assuntos
Aspergillus/enzimologia , Aspergillus/genética , Proteínas Fúngicas/metabolismo , Glicosídeo Hidrolases/metabolismo , Proteínas Fúngicas/genética , Genoma Fúngico , Glucanos/metabolismo , Glicosídeo Hidrolases/genética , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Pichia/genética , Pichia/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Xilanos/metabolismo , beta-Glucanas/metabolismo
12.
Syst Appl Microbiol ; 42(4): 481-487, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31153679

RESUMO

Biogas plants achieve its highest yield on plant biomass only with the most efficient hydrolysis of cellulose. This is driven by highly specialized hydrolytic microorganisms, which we have analyzed by investigating enrichment strategies for the isolation of cellulolytic bacteria out of a lab-scale biogas fermenter. We compared three different cultivation media as well as two different inoculation materials: Enrichment on filter paper in nylon bags (in sacco) or raw digestate. Next generation sequencing of the V3/V4 region of the bacterial 16S rRNA of metagenomic DNA from six different enrichment cultures, each in biological triplicates, revealed an average richness of 48 different OTU's with an average evenness of 0.3 in each sample. ß-Diversity of the bacterial community revealed significant differences between the two sampling techniques or the different media used. The isolation attempt of single cellulolytic organisms resulted in several clonal pure cultures. Regardless which medium or inoculation material, well-known cellulolytic key players such as Clostridium cellulosi, Herbinix hemicellulosilytica and Hungateiclostridium thermocellum were among the isolates. The inoculation material as well as the cultivation conditions are crucial to cultivate the representative cellulolytic organisms. Taking raw digestate as inoculation material and using the same material, filtered and sterilized, for supplementing media allowed to imitate the natural habitat. Pre-enrichment of cellulolytic organisms directly in their natural habitat led to significant advantages concerning high diversity and high abundance of unknown cellulolytic organisms, which is a key factor for the isolation of hitherto unknown species.


Assuntos
Biocombustíveis/microbiologia , Celulose/metabolismo , Microbiologia Industrial/métodos , Microbiota , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Biodiversidade , Biomassa , Reatores Biológicos/microbiologia , Meios de Cultura , DNA Bacteriano/genética , Metagenoma , Microbiota/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
13.
Microbiol Resour Announc ; 8(17)2019 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-31023818

RESUMO

Strain GS7-6-2 was isolated from a mesophilically operated biogas fermenter. The 16S rRNA gene sequence (93.27% identity to Anaerosphaera aminiphila WN036T) indicated that GS7-6-2 represents a putative novel species within the genus Anaerosphaera (family Peptoniphilaceae). Here, we report the draft genome sequence of GS7-6-2 as established by Illumina paired-end sequencing.

14.
Appl Microbiol Biotechnol ; 102(23): 10147-10159, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30259100

RESUMO

Due to their high secretion capacity, Gram-positive bacteria from the genus Bacillus are important expression hosts for the high-yield production of enzymes in industrial biotechnology; however, to date, strains from only few Bacillus species are used for enzyme production at industrial scale. Herein, we introduce Paenibacillus polymyxa DSM 292, a member of a different genus, as a novel host for secretory protein production. The model gene cel8A from Clostridium thermocellum was chosen as an easily detectable reporter gene with industrial relevance to demonstrate heterologous expression and secretion in P. polymyxa. The yield of the secreted cellulase Cel8A protein was increased by optimizing the expression medium and testing several promoter sequences in the expression plasmid pBACOV. Quantitative mass spectrometry was used to analyze the secretome in order to identify promising new promoter sequences from the P. polymyxa genome itself. The most abundantly secreted host proteins were identified, and the promoters regulating the expression of their corresponding genes were selected. Eleven promoter sequences were cloned and tested, including well-characterized promoters from Bacillus subtilis and Bacillus megaterium. The best result was achieved with the promoter for the hypothetical protein PPOLYM_03468 from P. polymyxa. In combination with the optimized expression medium, this promoter enabled the production of 5475 U/l of Cel8A, which represents a 6.2-fold increase compared to the reference promoter PaprE. The set of promoters described in this work covers a broad range of promoter strengths useful for heterologous expression in the new host P. polymyxa.


Assuntos
Celulase/biossíntese , Clostridium thermocellum/genética , Paenibacillus polymyxa/genética , Regiões Promotoras Genéticas , Bacillus megaterium/genética , Bacillus subtilis/genética , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Celulase/genética , Clostridium thermocellum/enzimologia , Meios de Cultura/química , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Genes Reporter , Vetores Genéticos , Microbiologia Industrial , Paenibacillus polymyxa/enzimologia
15.
Biotechnol Biofuels ; 11: 238, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30202433

RESUMO

BACKGROUND: Increasing the efficiency of enzymatic biomass degradation is crucial for a more economically feasible conversion of abundantly available plant feedstock. Synergistic effects between the enzymes deployed in the hydrolysis of various hemicelluloses have been demonstrated, which can reduce process costs by lowering the amount of enzyme required for the reaction. Xyloglucan is the only major hemicellulose for which no such effects have been described yet. RESULTS: We report the beneficial combination of two enzymes for the degradation of the hemicellulose xyloglucan. The addition of ß-galactosidase Bga2B from Clostridium stercorarium to an in vitro hydrolysis reaction of a model xyloglucan substrate increased the enzymatic efficiency of endoglucanase Cel9D from Clostridium thermocellum to up to 22-fold. Furthermore, the total amount of enzyme required for high hydrolysis yields was lowered by nearly 80%. Increased yields were also observed when using a natural complex substrate-tamarind kernel powder. CONCLUSION: The findings of this study may improve the valorization of feedstocks containing high-xyloglucan amounts. The combination of the endoglucanase Cel9D and the ß-galactosidase Bga2B can be used to efficiently produce the heptasaccharide XXXG. The exploitation of one specific oligosaccharide may open up possibilities for the use as a prebiotic or platform chemical in additional reactions.

16.
Biotechnol Biofuels ; 11: 229, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30159029

RESUMO

BACKGROUND: The bioconversion of lignocellulosic biomass in various industrial processes, such as the production of biofuels, requires the degradation of hemicellulose. Clostridium stercorarium is a thermophilic bacterium, well known for its outstanding hemicellulose-degrading capability. Its genome comprises about 50 genes for partially still uncharacterised thermostable hemicellulolytic enzymes. These are promising candidates for industrial applications. RESULTS: To reveal the hemicellulose-degrading potential of 50 glycoside hydrolases, they were recombinantly produced and characterised. 46 of them were identified in the secretome of C. stercorarium cultivated on cellobiose. Xylanases Xyn11A, Xyn10B, Xyn10C, and cellulase Cel9Z were among the most abundant proteins. The secretome of C. stercorarium was active on xylan, ß-glucan, xyloglucan, galactan, and glucomannan. In addition, the recombinant enzymes hydrolysed arabinan, mannan, and galactomannan. 20 enzymes are newly described, degrading xylan, galactan, arabinan, mannan, and aryl-glycosides of ß-d-xylose, ß-d-glucose, ß-d-galactose, α-l-arabinofuranose, α-l-rhamnose, ß-d-glucuronic acid, and N-acetyl-ß-d-glucosamine. The activities of three enzymes with non-classified glycoside hydrolase (GH) family modules were determined. Xylanase Xyn105F and ß-d-xylosidase Bxl31D showed activities not described so far for their GH families. 11 of the 13 polysaccharide-degrading enzymes were most active at pH 5.0 to pH 6.5 and at temperatures of 57-76 °C. Investigation of the substrate and product specificity of arabinoxylan-degrading enzymes revealed that only the GH10 xylanases were able to degrade arabinoxylooligosaccharides. While Xyn10C was inhibited by α-(1,2)-arabinosylations, Xyn10D showed a degradation pattern different to Xyn10B and Xyn10C. Xyn11A released longer degradation products than Xyn10B. Both tested arabinose-releasing enzymes, Arf51B and Axh43A, were able to hydrolyse single- as well as double-arabinosylated xylooligosaccharides. CONCLUSIONS: The obtained results lead to a better understanding of the hemicellulose-degrading capacity of C. stercorarium and its involved enzyme systems. Despite similar average activities measured by depolymerisation tests, a closer look revealed distinctive differences in the activities and specificities within an enzyme class. This may lead to synergistic effects and influence the enzyme choice for biotechnological applications. The newly characterised glycoside hydrolases can now serve as components of an enzyme platform for industrial applications in order to reconstitute synthetic enzyme systems for complete and optimised degradation of defined polysaccharides and hemicellulose.

17.
Biotechnol Biofuels ; 11: 220, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30116297

RESUMO

BACKGROUND: The development of efficient cellulase blends is a key factor for cost-effectively valorizing biomass in a new bio-economy. Today, the enzymatic hydrolysis of plant-derived polysaccharides is mainly accomplished with fungal cellulases, whereas potentially equally effective cellulose-degrading systems from bacteria have not been developed. Particularly, a thermostable multi-enzyme cellulase complex, the cellulosome from the anaerobic cellulolytic bacterium Clostridium thermocellum is promising of being applied as cellulolytic nano-machinery for the production of fermentable sugars from cellulosic biomass. RESULTS: In this study, 60 cellulosomal components were recombinantly produced in E. coli and systematically permuted in synthetic complexes to study the function-activity relationship of all available enzymes on Kraft pulp from pine wood as the substrate. Starting from a basic exo/endoglucanase complex, we were able to identify additional functional classes such as mannanase and xylanase for optimal activity on the substrate. Based on these results, we predicted a synthetic cellulosome complex consisting of seven single components (including the scaffoldin protein and a ß-glucosidase) and characterized it biochemically. We obtained a highly thermostable complex with optimal activity around 60-65 °C and an optimal pH in agreement with the optimum of the native cellulosome (pH 5.8). Remarkably, a fully synthetic complex containing 47 single cellulosomal components showed comparable activity with a commercially available fungal enzyme cocktail on the softwood pulp substrate. CONCLUSIONS: Our results show that synthetic bacterial multi-enzyme complexes based on the cellulosome of C. thermocellum can be applied as a versatile platform for the quick adaptation and efficient degradation of a substrate of interest.

18.
BMC Microbiol ; 18(1): 56, 2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29884129

RESUMO

BACKGROUND: The genus Bacillus includes a great variety of species with potential applications in biotechnology. While species such as B. subtilis or B. licheniformis are well-known and used to provide various products at industrial scale, other Bacillus species are less characterized and are not yet used in commercial processes. One reason for this is the fact that genetic manipulation of new isolates is usually complicated with conventional techniques which have to be adapted to each new strain. Even in well-established strains, the available transformation protocols often suffer from low efficiencies. RESULTS: In this paper, we provide a new broad host range E. coli/Bacillus shuttle vector, named pBACOV (Bacillus conjugation vector), that can be efficiently transferred to various Bacillus species using a single protocol. A variant of pBACOV carrying the sfGFP gene was successfully transferred to eight different species from the genus Bacillus and to one Paenibacillus species using triparental conjugation ("transmating"). This was achieved using a single protocol and worked for nine out of eleven tested acceptor species. The transmating procedure was used to test expression of the heterologous reporter gene sfGFP under control of the PaprE-promoter from B. subtilis in several Bacillus species in parallel. Expression of sfGFP was found in eight out of nine transmates. For several of the tested species, this is the first report of a method for genetic modification and heterologous gene expression. The expression level, analyzed by measuring the relative sfGFP-fluorescence normalized to the cell density of the cultures, was highest in B. mojavensis. CONCLUSIONS: The new shuttle vector pBACOV can be transferred to many different Bacillus and Paenibacillus species using a simple and efficient transmating protocol. It is a versatile tool facilitating the application of recombinant DNA technology in new as well as established strains, or selection of an ideal host for heterologous gene expression from a multitude of strains. This paves the way for the genetic modification and biotechnological exploitation of the broad diversity of species of Bacillus and related genera as well as different strains from these species.


Assuntos
Bacillus/genética , Conjugação Genética , Vetores Genéticos , Proteínas de Fluorescência Verde/genética , Genes Reporter , Engenharia Genética , Especificidade de Hospedeiro , Paenibacillus/genética , Regiões Promotoras Genéticas
19.
World J Microbiol Biotechnol ; 34(3): 42, 2018 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-29480332

RESUMO

An increasing number of researchers working in biology, biochemistry, biotechnology, bioengineering, bioinformatics and other related fields of science are using biological molecules. As the scientific background of the members of different scientific communities is more diverse than ever before, the number of scientists not familiar with the rules for non-ambiguous designation of genetic elements is increasing. However, with biological molecules gaining importance through biotechnology, their functional and unambiguous designation is vital. Unfortunately, naming genes and proteins is not an easy task. In addition, the traditional concepts of bioinformatics are challenged with the appearance of proteins comprising different modules with a respective function in each module. This article highlights basic rules and novel solutions in designation recently used within the community of bacterial geneticists, and we discuss the present-day handling of gene and protein designations. As an example we will utilize a recent mischaracterization of gene nomenclature. We make suggestions for better handling of names in future literature as well as in databases and annotation projects. Our methodology emphasizes the hydrolytic function of multi-modular genes and extracellular proteins from bacteria.


Assuntos
Clostridium thermocellum/enzimologia , Clostridium thermocellum/genética , Biologia Computacional/métodos , Proteínas/genética , Bases de Dados Genéticas , Bases de Dados de Proteínas , Genoma Bacteriano , Genômica/métodos , Glucosidases/genética , Armazenamento e Recuperação da Informação/métodos , Anotação de Sequência Molecular
20.
Genome Announc ; 6(6)2018 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-29439041

RESUMO

The cellulolytic bacterium Herbivorax saccincola strain GGR1, which represents the type strain of this species, was isolated from the in vivo enriched cellulose-binding community of a lab scale thermophilic biogas reactor. Here, we report the complete genome sequence of H. saccincola GGR1T, the first isolated member of the genus Herbivorax.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...