Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mater Chem B ; 12(12): 3022-3030, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38426244

RESUMO

Lipid droplets (LDs) are cytoplasmic lipid-rich organelles with important roles in lipid storage and metabolism, cell signaling and membrane biosynthesis. Additionally, multiple diseases, such as obesity, fatty liver, cardiovascular diseases and cancer, are related to the metabolic disorders of LDs. In various cancer cells, LD accumulation is associated with resistance to cell death, reduced effectiveness of chemotherapeutic drugs, and increased proliferation and aggressiveness. In this work, we present a new viscosity-sensitive, green-emitting BODIPY probe capable of distinguishing between ordered and disordered lipid phases and selectively internalising into LDs of live cells. Through the use of fluorescence lifetime imaging microscopy (FLIM), we demonstrate that LDs in live cancer (A549) and non-cancer (HEK 293T) cells have vastly different microviscosities. Additionally, we quantify the microviscosity changes in LDs under the influence of DNA-damaging chemotherapy drugs doxorubicin and etoposide. Finally, we show that doxorubicin and etoposide have different effects on the microviscosities of LDs in chemotherapy-resistant A549 cancer cells.


Assuntos
Compostos de Boro , Gotículas Lipídicas , Neoplasias , Gotículas Lipídicas/metabolismo , Corantes Fluorescentes/farmacologia , Corantes Fluorescentes/metabolismo , Etoposídeo/metabolismo , Lipídeos , Doxorrubicina/farmacologia , Doxorrubicina/metabolismo , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo
2.
RSC Adv ; 13(28): 19257-19264, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37377877

RESUMO

Viscosity is a key characteristic of lipid membranes - it governs the passive diffusion of solutes and affects the lipid raft formation and membrane fluidity. Precise determination of viscosity values in biological systems is of great interest and viscosity-sensitive fluorescent probes offer a convenient solution for this task. In this work we present a novel membrane-targeting and water-soluble viscosity probe BODIPY-PM, which is based on one of the most frequently used probes BODIPY-C10. Despite its regular use, BODIPY-C10 suffers from poor integration into liquid-ordered lipid phases and lack of water solubility. Here, we investigate the photophysical characteristics of BODIPY-PM and demonstrate that solvent polarity only slightly affects the viscosity-sensing qualities of BODIPY-PM. In addition, with fluorescence lifetime imaging microscopy (FLIM), we imaged microviscosity in complex biological systems - large unilamellar vesicles (LUVs), tethered bilayer membranes (tBLMs) and live lung cancer cells. Our study showcases that BODIPY-PM preferentially stains the plasma membranes of live cells, equally well partitions into both liquid-ordered and liquid-disordered phases and reliably distinguishes lipid phase separation in tBLMs and LUVs.

3.
J Mater Chem B ; 11(17): 3919-3928, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37060145

RESUMO

Intracellular polarity in lipid droplets as well as other organelles may provide useful knowledge about various processes taking place in live cells. Therefore, small fluorophores capable of visualising polarity are undergoing rapid development. In this paper, we report new red-emitting polarity sensitive BODIPY probes that can distinguish between liquid-ordered and liquid-disordered phases and can internalise into lipid droplets of live cells. Our reported probes sense lipid environment not through solvatochromic shift of the fluorescence spectra but through the change in the fluorescence lifetime of their monoexponential decays. This makes them convenient for fluorescence lifetime imaging microscopy. The probes were synthesised by modifying viscosity-sensitive meso-phenyl BODIPY with electron-donating 2-thienyl moieties at the α- and ß-positions, significantly red-shifting absorption and fluorescence spectra of the dyes and improving sensitivity to polarity, while suppressing viscosity dependence. Finally, a novel probe - BP OC16 TP2 was suitable for sensing polarity in lipid droplets of live MCF-7 human breast cancer cells. We demonstrated that different chemotherapeutics affected lipid droplet polarity differently: cisplatin had no effect on lipid droplet polarity, whereas paclitaxel, depending on its concentration, either decreased or increased lipid droplet polarity.


Assuntos
Gotículas Lipídicas , Tiofenos , Humanos , Microscopia de Fluorescência/métodos , Compostos de Boro
4.
Phys Chem Chem Phys ; 22(16): 8296-8303, 2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32103227

RESUMO

Viscosity is the key parameter of many biological systems as it influences passive diffusion, affects the lipid raft formation and plays a significant role in several diseases on a cellular level. Consequently, determination of precise viscosity values is of great interest and viscosity-sensitive fluorescent probes offer a convenient solution for this task. One of the most frequently used viscosity-sensitive probes is BODIPY-C10. Yet despite its regular use, BODIPY-C10 remains insufficiently investigated. In this work, we explored how the polarity, hydrogen bonding abilities of the solvent and the presence of macromolecules affect the viscosity-sensing qualities of BODIPY-C10. In addition, we investigated the relaxation pathway of BODIPY-C10 with the help of femtosecond transient absorption and time-dependent DFT calculations. Our results show that while BODIPY-C10 is not affected by protic solvents, accurate quantitative determination of viscosity is possible only if BODIPY-C10 is calibrated in the same polarity environment as in the sample of interest, and the size of the surrounding molecules is not larger than the size of BODIPY-C10. The latter limitation is likely to apply to all molecular rotors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...