Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Biochemistry (Mosc) ; 89(3): 431-440, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38648763

RESUMO

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/Apo2L) is a promising agent for treatment of AML due to its specific apoptosis-inducing effect on tumor cells but not normal cells. However, emergence of resistance to TRAIL in the AML cells limits its potential as an antileukemic agent. Previously, we revealed increase in the resistance of the human AML THP-1 cells to the TRAIL-induced death during their LPS-dependent proinflammatory activation and in the in vitro model of LPS-independent proinflammatory activation - in a long-term high-density cell culture. In this study, we investigated mechanisms of this phenomenon using Western blot analysis, caspase 3 enzymatic activity analysis, quantitative reverse transcription-PCR, and flow cytometry. The results showed that the increased resistance to the TRAIL-induced cell death of AML THP-1 cells during their pro-inflammatory activation is associated with the decrease in the surface expression of the proapoptotic receptors TRAIL-R1/DR4 and TRAIL-R2/DR5, as well as with the increased content of members of the IAPs family - Livin and cIAP2. The results of this article open up new insights into the role of inflammation in formation of the resistance of AML cells to the action of mediators of antitumor immunity, in particular TRAIL.


Assuntos
Apoptose , Leucemia Mieloide Aguda , Receptores do Ligante Indutor de Apoptose Relacionado a TNF , Ligante Indutor de Apoptose Relacionado a TNF , Humanos , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/tratamento farmacológico , Apoptose/efeitos dos fármacos , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Células THP-1 , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Caspase 3/metabolismo
2.
Antioxidants (Basel) ; 11(10)2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36290741

RESUMO

The search for new targets for the pathological action of ethanol remains an urgent task of biomedicine. Since degenerative changes in the liver are associated with the development of oxidative stress, antioxidants are promising agents for the treatment of alcohol-related diseases. In this work, we studied the ability of the carotenoid antioxidant, astaxanthin (AX), to prevent ethanol-induced changes in the liver of rats. It was shown that AX is able to protect the structure of mitochondria from degenerative changes caused by ethanol to improve mitochondrial functions. AX positively influences the activity and expression of proteins of the mitochondrial respiratory chain complexes and ATPase. In addition, a protective effect of AX on the rate and activity of mitochondrial respiration was demonstrated in the work. Thus, studies have shown that AX is involved in protective mechanisms in response to ethanol-induced mitochondrial dysfunction.

3.
Int J Mol Sci ; 23(14)2022 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-35887226

RESUMO

It is known that cell culture density can modulate the drug resistance of acute myeloid leukemia (AML) cells. In this work, we studied the drug sensitivity of AML cells in high-density cell cultures (cell lines THP-1, HL-60, MV4-11, and U937). It was shown that the AML cells in high-density cell cultures in vitro were significantly more resistant to DNA-damaging drugs and recombinant ligand izTRAIL than those in low-density cell cultures. To elucidate the mechanism of the increased drug resistance of AML cells in high-density cell cultures, we studied the activation of Bcl-2, Hif-1alpha, and NF-kB proteins, as well as cytokine secretion, the inflammatory immunophenotype, and the transcriptome for THP-1 cells in the low-density and high-density cultures. The results indicated that the increase in the drug resistance of proliferating THP-1 cells in high-density cell cultures was associated with the accumulation of inflammatory cytokines in extracellular medium, and the formation of NF-kB-dependent inflammatory-like cell activation with the anti-apoptotic proteins Bcl-2 and Bcl-xl. The increased drug resistance of THP-1 cells in high-density cultures can be reduced by ABT-737, an inhibitor of Bcl-2 family proteins, and by inhibitors of NF-kB. The results suggest a mechanism for increasing the drug resistance of AML cells in the bone marrow and are of interest for developing a strategy to suppress this resistance.


Assuntos
Proteínas Reguladoras de Apoptose , Leucemia Mieloide Aguda , Apoptose , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Resistência a Medicamentos , Resistencia a Medicamentos Antineoplásicos , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , NF-kappa B , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Células THP-1
4.
Biomolecules ; 12(2)2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35204655

RESUMO

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/Apo2L) is a highly selective and promising anticancer agent due to its specific apoptosis-inducing effect on tumor cells, rather than most normal cells. TRAIL is currently under investigation for use in the treatment of leukemia. However, the resistance of leukemic cells to TRAIL-induced apoptosis may limit its efficacy. The mechanisms of leukemic cell resistance to antitumor immunity remains a topical issue. In this work, we have found an increase in the resistance to TRAIL-induced cell death in human leukemia THP-1 cells, which was caused by differentiation into a macrophage-like phenotype in high-density culture in vitro. Stressful conditions, manifested by the inhibition of cell growth and the activation of cell death in high-density culture of THP-1 cells, induced the appearance of cells adhered to culture dishes. The THP-1ad cell line was derived by selection of these adhered cells. The genetic study, using STR and aCGH assays, has shown that THP-1ad cells were derived from THP-1 cells due to mutagenesis. The THP-1ad cells possessed high proliferative potential and a macrophage-like immunophenotype. The adhesion of THP-1ad cells to the extracellular matrix was mediated by αVß5 integrin. The cytokine production, as well as the rise of intracellular ROS and NO activities by LPS in THP-1ad cell culture, were characteristic of macrophage-like cells. The THP-1ad cells were found to appear to increase in resistance to TRAIL-induced cell death in comparison with THP-1 cells. The mechanism of the increase in TRAIL-resistance can be related to a decrease in the expression of death receptors DR4 and DR5 on the THP-1ad cells. Thus, the macrophage-like phenotype formation with the maintenance of a high proliferative potential of leukemic cells, caused by stress conditions in high-density cell cultures in vitro, can induce an increase in resistance to TRAIL-induced cell death due to the loss of DR4 and DR5 receptors. The possible realization of these events in vivo may be the reason for tumor progression.


Assuntos
Apoptose , Macrófagos , Técnicas de Cultura de Células , Morte Celular , Linhagem Celular Tumoral , Regulação para Baixo , Humanos , Células THP-1
5.
Biomedicines ; 8(10)2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33092172

RESUMO

Mitochondria are key organelles of the cell because their main function is the capture of energy-rich substrates from the cytoplasm and oxidative cleavage with the generation of carbon dioxide and water, processes that are coupled with the synthesis of ATP. Mitochondria are subject to oxidative stress through the formation of the mitochondrial permeability transition pore (mPTP). Various antioxidants are used to reduce damage caused by oxidative stress and to improve the protection of the antioxidant system. Astaxanthin (AST) is considered to be a dietary antioxidant, which is able to reduce oxidative stress and enhance the antioxidant defense system. In the present investigation, the effect of AST on the functional state of rat heart mitochondria impaired by isoproterenol (ISO) under mPTP functioning was examined. It was found that AST raised mitochondrial respiration, the Ca2+ retention capacity (CRC), and the rate of TPP+ influx in rat heart mitochondria (RHM) isolated from ISO-injected rats. However, the level of reactive oxygen species (ROS) production increased. In addition, the concentrations of cardiolipin (CL), Mn-SOD2, and the proteins regulating mPTP rose after the injection of ISO in RHM pretreated with AST. Based on the data obtained, we suggest that AST has a protective effect in rat heart mitochondria.

6.
Int J Mol Sci ; 19(6)2018 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-29882895

RESUMO

Excessive generation of reactive oxygen species (ROS) in mitochondria and the opening of the nonselective mitochondrial permeability transition pore are important factors that promote cardiac pathologies and dysfunction. The hormone melatonin (MEL) is known to improve the functional state of mitochondria via an antioxidant effect. Here, the effect of MEL administration on heart mitochondria from aged rats with acute cardiac failure caused by isoprenaline hydrochloride (ISO) was studied. A histological analysis revealed that chronic intake of MEL diminished the age-dependent changes in the structure of muscle fibers of the left ventricle, muscle fiber swelling, and injury zones characteristic of acute cardiac failure caused by ISO. In acute heart failure, the respiratory control index (RCI) and the Ca2+ retention capacity in isolated rat heart mitochondria (RHM) were reduced by 30% and 40%, respectively, and mitochondrial swelling increased by 34%. MEL administration abolished the effect of ISO. MEL partially prevented ISO-induced changes at the subunit level of respiratory complexes III and V and drastically decreased the expression of complex I subunit NDUFB8 both in control RHM and in RHM treated with ISO, which led to the inhibition of ROS production. MEL prevents the mitochondrial dysfunction associated with heart failure caused by ISO. It was shown that the level of 2',3'-cyclicnucleotide-3'-phosphodiasterase (CNPase), which is capable of protecting cells in aging, increased in acute heart failure. MEL also retained the CNPase content in RHM both in control experiments and after ISO-induced heart damage. We concluded that an increase in the CNPase level promotes cardioprotection.


Assuntos
Envelhecimento/patologia , Insuficiência Cardíaca/metabolismo , Melatonina/farmacologia , Mitocôndrias Cardíacas/metabolismo , 2',3'-Nucleotídeo Cíclico 3'-Fosfodiesterase/metabolismo , Animais , Cálcio/metabolismo , Respiração Celular/efeitos dos fármacos , Crioultramicrotomia , Transporte de Elétrons/efeitos dos fármacos , Insuficiência Cardíaca/patologia , Ventrículos do Coração/patologia , Isoproterenol/farmacologia , Masculino , Mitocôndrias Cardíacas/efeitos dos fármacos , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Dilatação Mitocondrial/efeitos dos fármacos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Canais de Ânion Dependentes de Voltagem/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...