Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Proteome Res ; 12(1): 293-8, 2013 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-23205526

RESUMO

About 5000 (25%) of the ~20400 human protein-coding genes currently lack any experimental evidence at the protein level. For many others, there is only little information relative to their abundance, distribution, subcellular localization, interactions, or cellular functions. The aim of the HUPO Human Proteome Project (HPP, www.thehpp.org ) is to collect this information for every human protein. HPP is based on three major pillars: mass spectrometry (MS), antibody/affinity capture reagents (Ab), and bioinformatics-driven knowledge base (KB). To meet this objective, the Chromosome-Centric Human Proteome Project (C-HPP) proposes to build this catalog chromosome-by-chromosome ( www.c-hpp.org ) by focusing primarily on proteins that currently lack MS evidence or Ab detection. These are termed "missing proteins" by the HPP consortium. The lack of observation of a protein can be due to various factors including incorrect and incomplete gene annotation, low or restricted expression, or instability. neXtProt ( www.nextprot.org ) is a new web-based knowledge platform specific for human proteins that aims to complement UniProtKB/Swiss-Prot ( www.uniprot.org ) with detailed information obtained from carefully selected high-throughput experiments on genomic variation, post-translational modifications, as well as protein expression in tissues and cells. This article describes how neXtProt contributes to prioritize C-HPP efforts and integrates C-HPP results with other research efforts to create a complete human proteome catalog.


Assuntos
Bases de Dados de Proteínas , Proteínas , Proteoma , Cromossomos Humanos , Biologia Computacional , Genoma Humano , Humanos , Internet , Bases de Conhecimento , Espectrometria de Massas , Processamento de Proteína Pós-Traducional , Proteínas/genética , Proteínas/metabolismo
2.
Nucleic Acids Res ; 40(Database issue): D76-83, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22139911

RESUMO

neXtProt (http://www.nextprot.org/) is a new human protein-centric knowledge platform. Developed at the Swiss Institute of Bioinformatics (SIB), it aims to help researchers answer questions relevant to human proteins. To achieve this goal, neXtProt is built on a corpus containing both curated knowledge originating from the UniProtKB/Swiss-Prot knowledgebase and carefully selected and filtered high-throughput data pertinent to human proteins. This article presents an overview of the database and the data integration process. We also lay out the key future directions of neXtProt that we consider the necessary steps to make neXtProt the one-stop-shop for all research projects focusing on human proteins.


Assuntos
Bases de Dados de Proteínas , Humanos , Bases de Conhecimento , Proteínas/genética , Proteínas/metabolismo , Interface Usuário-Computador
3.
Structure ; 12(11): 2081-93, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15530372

RESUMO

The biological activity of chemokines requires interactions with cell surface proteoglycans. We have determined the structure of the chemokine RANTES (regulated on activation normal T cell expressed) in the presence of heparin-derived disaccharide analogs by X-ray crystallography. These structures confirm the essential role of the BBXB motif in the interaction between the chemokine and the disaccharide. Unexpected interactions were observed in the 30s loop and at the amino terminus. Mutant RANTES molecules were designed to abrogate these interactions and their biological activity examined in vivo. The K45E mutant within the BBXB motif lost the capacity to bind heparin and the ability to elicit cellular recruitment. The Y3A mutant maintained its capacity to bind heparin but was unable to elicit cellular recruitment. Finally, a tetrasaccharide is the smallest oligosaccharide which effectively abolishes the ability of RANTES to recruit cells in vivo. These crystallographic structures provide a description of the molecular interaction of a chemokine with glycosaminoglycans.


Assuntos
Quimiocina CCL5/química , Quimiocinas/antagonistas & inibidores , Sequência de Carboidratos , Quimiocina CCL5/genética , Cristalografia por Raios X , Heparina/química , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Conformação Proteica
4.
Proteomics ; 4(8): 2333-51, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15274127

RESUMO

We present an integrated proteomics platform designed for performing differential analyses. Since reproducible results are essential for comparative studies, we explain how we improved reproducibility at every step of our laboratory processes, e.g. by taking advantage of the powerful laboratory information management system we developed. The differential capacity of our platform is validated by detecting known markers in a real sample and by a spiking experiment. We introduce an innovative two-dimensional (2-D) plot for displaying identification results combined with chromatographic data. This 2-D plot is very convenient for detecting differential proteins. We also adapt standard multivariate statistical techniques to show that peptide identification scores can be used for reliable and sensitive differential studies. The interest of the protein separation approach we generally apply is justified by numerous statistics, complemented by a comparison with a simple shotgun analysis performed on a small volume sample. By introducing an automatic integration step after mass spectrometry data identification, we are able to search numerous databases systematically, including the human genome and expressed sequence tags. Finally, we explain how rigorous data processing can be combined with the work of human experts to set high quality standards, and hence obtain reliable (false positive < 0.35%) and nonredundant protein identifications.


Assuntos
Líquidos Corporais/química , Perfilação da Expressão Gênica , Gestão da Informação/métodos , Proteínas/análise , Proteínas/química , Proteômica/métodos , Cromatografia/instrumentação , Cromatografia/métodos , Biologia Computacional , Bases de Dados Factuais , Humanos , Gestão da Informação/instrumentação , Espectrometria de Massas/instrumentação , Espectrometria de Massas/métodos , Peptídeos/análise , Proteínas/genética , Proteínas/metabolismo , Reprodutibilidade dos Testes , Interface Usuário-Computador
5.
J Mol Biol ; 336(5): 1195-210, 2004 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-15037079

RESUMO

Specific protein-protein interactions play crucial roles in the regulation of any biological process. Recently, a new protein-protein interaction domain termed PB1 (Phox and Bem1) was identified, which is conserved throughout evolution and present in diverse proteins functioning in signal transduction, cell polarity and survival. Here, we investigated the structure and molecular interactions of the PB1 heterodimer complex composed of the PB1 domains of the yeast proteins Bem1 and Cdc24. A structural model of the Cdc24 PB1 was built by homology modeling and molecular dynamics simulations, and experimentally validated by 15N nuclear Overhauser effect spectroscopy (NOESY)-heteronuclear single quantum coherence (HSQC) analysis. Residues at the interface of the complex for both proteins were identified by NMR titration experiments. A model of the heterodimer was obtained by docking of the two PB1 domains with HADDOCK, which applies ambiguous interaction restraints on residues at the interface to drive the docking procedure. The refined model was validated by site-directed mutagenesis on both Bem1 and Cdc24. Finally, the docking was repeated from the newly published NMR structure of Cdc24, allowing us to assess the performance of homology-based docking. Our results provide insight into the molecular structure of the Bem1-Cdc24 PB1-mediated heterodimer, which allowed identification of critical residues at the binding interface.


Assuntos
Proteínas de Ciclo Celular/química , Fatores de Troca do Nucleotídeo Guanina , Mapeamento de Interação de Proteínas , Proteínas Proto-Oncogênicas/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Simulação por Computador , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia Estrutural de Proteína
6.
J Magn Reson ; 156(2): 313-7, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12165268

RESUMO

A two-dimensional HSQC-based NMR method, (15)N-COSMO-HSQC, is presented for the rapid determination of homonuclear (3)J(HNHalpha) couplings in (15)N-labeled proteins in solution. Scalar couplings are extracted by comparing the intensity of two separate datasets recorded with and without decoupling of the (3)J(HNHalpha) during a preparation period. The scalar couplings are introduced through a cosine modulation of the peak intensities. The experiment relies on a BIRD sandwich to selectively invert all amide protons H(N) and is very simple to implement. (3)J(HNHalpha) couplings were determined using both the (15)N-COSMO-HSQC and quantitative-J on (15)N-labeled chemokine RANTES. The two experiments show well-correlated values.


Assuntos
Ressonância Magnética Nuclear Biomolecular , Proteínas/química , Matemática
7.
J Am Chem Soc ; 124(24): 7235-9, 2002 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-12059250

RESUMO

The scarcity of structural information on carbohydrates results from combined difficulties to crystallize and the limitations in NMR analysis. Current methods for determining basic NMR parameters such as (1)H homonuclear scalar couplings are very limited, especially for large molecules such as polysaccharides, oligonucleotides, and the carbohydrate part of glycoproteins. In this paper, a NMR experiment for the determination of endocyclic (1)H homonuclear scalar couplings ((3)J(HH)) in unlabeled carbohydrates is presented. In addition to scalar couplings, cross-correlated dipole-dipole relaxation rates were measured for large polysaccharides. The measurement of all endocyclic homonuclear coupling constants within monosaccharide units is presented for lactose, a model disaccharide, and for a natural-abundance 2 MDa bacterial polysaccharide excreted by Streptococcus thermophilus Sfi39.


Assuntos
Carboidratos/química , Ressonância Magnética Nuclear Biomolecular/métodos , Sequência de Carboidratos , Lactose/química , Dados de Sequência Molecular , Polissacarídeos Bacterianos/química
8.
EMBO J ; 21(7): 1565-76, 2002 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-11927541

RESUMO

In Saccharomyces cerevisiae, activation of Cdc42 by its guanine-nucleotide exchange factor Cdc24 triggers polarization of the actin cytoskeleton at bud emergence and in response to mating pheromones. The adaptor protein Bem1 localizes to sites of polarized growth where it interacts with Cdc42, Cdc24 and the PAK-like kinase Cla4. We have isolated Bem1 mutants (Bem1-m), which are specifically defective for binding to Cdc24. The mutations map within the conserved PB1 domain, which is necessary and sufficient to interact with the octicos peptide repeat (OPR) motif of Cdc24. Although Bem1-m mutant proteins localize normally, bem1-m cells are unable to maintain Cdc24 at sites of polarized growth. As a consequence, they are defective for apical bud growth and the formation of mating projections. Localization of Bem1 to the incipient bud site requires activated Cdc42, and conversely, expression of Cdc42-GTP is sufficient to accumulate Bem1 at the plasma membrane. Thus, our results suggest that Bem1 functions in a positive feedback loop: local activation of Cdc24 produces Cdc42-GTP, which recruits Bem1. In turn, Bem1 stabilizes Cdc24 at the site of polarization, leading to apical growth.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Fúngicas/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Repressoras , Proteínas de Saccharomyces cerevisiae , Proteínas Adaptadoras de Transdução de Sinal , Alelos , Sequência de Aminoácidos , Sítios de Ligação , Sequência Conservada , Proteínas Inibidoras de Quinase Dependente de Ciclina , Proteínas Fúngicas/genética , Proteínas de Fluorescência Verde , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Dados de Sequência Molecular , Morfogênese , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Proteína cdc42 de Saccharomyces cerevisiae de Ligação ao GTP/genética , Proteína cdc42 de Saccharomyces cerevisiae de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...