Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Issues Mol Biol ; 27: 127-142, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28885179

RESUMO

RNA-sequencing technology has been widely adopted to investigate host responses during infection with pathogens. Dual RNA-sequencing (RNA-seq) allows the simultaneous capture of pathogen specific transcripts during infection, providing a more complete view of the interaction. In this review, we focus on the design of dual RNA-seq experiments and the application of downstream data analysis to gain biological insight into both sides of the interaction. Recent literature in this area demonstrates the power of the dual RNA-seq approach and shows that it is not limited to model systems where genomic resources are available. A reduction in sequencing cost and single cell transcriptomics coupled with protein and metabolite level dual approaches are set to enhance our understanding of plant-pathogen interactions. Sequencing costs continue to decrease and single cell transcriptomics is becoming more feasible. In combination with proteomics and metabolomics studies, these technological advances are likely to contribute to our understanding of the temporal and spatial aspects of dynamic plant-pathogen interactions.


Assuntos
Resistência à Doença/genética , Fungos/genética , Genoma de Planta , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Interações Hospedeiro-Patógeno , Plantas/genética , Mapeamento Cromossômico , Fungos/metabolismo , Fungos/patogenicidade , Biblioteca Gênica , Marcadores Genéticos , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Plantas/imunologia , Plantas/microbiologia , Transcriptoma
2.
Sci Rep ; 7: 45402, 2017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28349984

RESUMO

Eucalyptus species are cultivated for forestry and are of economic importance. The fungal stem canker pathogen Chrysoporthe austroafricana causes disease of varying severity on E. grandis. The Eucalyptus grandis-Chrysoporthe austroafricana interaction has been established as a model system for studying Eucalyptus antifungal defence. Previous studies revealed that the phytohormone salicylic acid (SA) affects the levels of resistance in highly susceptible (ZG14) and moderately resistant (TAG5) clones. The aims of this study were to examine histochemical changes in response to wounding and inoculation as well as host responses at the protein level. The anatomy and histochemical changes induced by wounding and inoculation were similar between the clones, suggesting that anatomical differences do not underlie their different levels of resistance. Tyloses and gum-like substances were present after inoculation and wounding, but cell death occurred only after inoculation. Hyphae of C. austroafricana were observed inside dead and living cells, suggesting that the possibility of a hemibiotrophic interaction requires further investigation. Proteomics analysis revealed the possible involvement of proteins associated with cell death, SA signalling and systemic resistance. In combination with previous information, this study forms a basis for future functional characterisation of candidate genes involved in resistance of E. grandis to C. austroafricana.


Assuntos
Ascomicetos/metabolismo , Resistência à Doença/imunologia , Eucalyptus/microbiologia , Doenças das Plantas/imunologia , Ácido Salicílico/metabolismo , Ciclopentanos/metabolismo , Eucalyptus/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Oxilipinas/metabolismo , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Caules de Planta/metabolismo , Xilema/metabolismo
3.
Front Microbiol ; 7: 1953, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28008326

RESUMO

Chrysoporthe austroafricana is a fungal pathogen that causes the development of stem cankers on susceptible Eucalyptus grandis trees. Clones of E. grandis that are partially resistant and highly susceptible have been identified based on the extent of lesion formation on the stem upon inoculation with C. austroafricana. These interactions have been used as a model pathosystem to enhance our understanding of interactions between pathogenic fungi and woody hosts, which may be different to herbaceous hosts. In previous research, transcriptomics of host responses in these two clones to C. austroafricana suggested roles for salicylic acid and gibberellic acid phytohormone signaling in defense. However, it is unclear how the pathogen infiltrates host tissue and which pathogenicity factors facilitate its spread in the two host genotypes. The aim of this study was to investigate these two aspects of the E. grandis-C. austroafricana interaction and to test the hypothesis that the pathogen possesses mechanisms to modulate the tree phytohormone-mediated defenses. Light microscopy showed that the pathogen occurred in most cell types and structures within infected E. grandis stem tissue. Notably, the fungus appeared to spread through the stem by penetrating cell wall pits. In order to understand the molecular interaction between these organisms and predict putative pathogenicity mechanisms of C. austroafricana, fungal gene expression was studied in vitro and in planta. Fungal genes associated with cell wall degradation, carbohydrate metabolism and phytohormone manipulation were expressed in planta by C. austroafricana. These genes could be involved in fungal spread by facilitating cell wall pit degradation and manipulating phytohormone mediated defense in each host environment, respectively. Specifically, the in planta expression of an ent-kaurene oxidase and salicylate hydroxylase in C. austroafricana suggests putative mechanisms by which the pathogen can modulate the phytohormone-mediated defenses of the host. These mechanisms have been reported in herbaceous plant-pathogen interactions, supporting the notion that these aspects of the interaction are similar in a woody species. This study highlights ent-kaurene oxidase and salicylate hydroxylase as candidates for further functional characterization.

4.
PLoS One ; 10(4): e0124281, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25915516

RESUMO

African horse sickness is a serious equid disease caused by the orbivirus African horse sickness virus (AHSV). The virus has ten double-stranded RNA genome segments encoding seven structural and three non-structural proteins. Recently, an additional protein was predicted to be encoded by genome segment 9 (Seg-9), which also encodes VP6, of most orbiviruses. This has since been confirmed in bluetongue virus and Great Island virus, and the non-structural protein was named NS4. In this study, in silico analysis of AHSV Seg-9 sequences revealed the existence of two main types of AHSV NS4, designated NS4-I and NS4-II, with different lengths and amino acid sequences. The AHSV NS4 coding sequences were in the +1 reading frame relative to that of VP6. Both types of AHSV NS4 were expressed in cultured mammalian cells, with sizes close to the predicted 17-20 kDa. Fluorescence microscopy of these cells revealed a dual cytoplasmic and nuclear, but not nucleolar, distribution that was very similar for NS4-I and NS4-II. Immunohistochemistry on heart, spleen, and lung tissues from AHSV-infected horses showed that NS4 occurs in microvascular endothelial cells and mononuclear phagocytes in all of these tissues, localising to the both the cytoplasm and the nucleus. Interestingly, NS4 was also detected in stellate-shaped dendritic macrophage-like cells with long cytoplasmic processes in the red pulp of the spleen. Finally, nucleic acid protection assays using bacterially expressed recombinant AHSV NS4 showed that both types of AHSV NS4 bind dsDNA, but not dsRNA. Further studies will be required to determine the exact function of AHSV NS4 during viral replication.


Assuntos
Vírus da Doença Equina Africana/genética , Vírus da Doença Equina Africana/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Doença Equina Africana/patologia , Doença Equina Africana/virologia , Vírus da Doença Equina Africana/classificação , Animais , Linhagem Celular , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação Viral da Expressão Gênica , Genoma Viral , Genótipo , Cavalos , Espaço Intracelular/metabolismo , Fases de Leitura Aberta , Filogenia , Transporte Proteico , Análise de Sequência de DNA , Sorogrupo
5.
Tree Physiol ; 34(9): 931-43, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25261123

RESUMO

Long-lived tree species are subject to attack by various pests and pathogens during their lifetime. This problem is exacerbated by climate change, which may increase the host range for pathogens and extend the period of infestation by pests. Plant defences may involve preformed barriers or induced resistance mechanisms based on recognition of the invader, complex signalling cascades, hormone signalling, activation of transcription factors and production of pathogenesis-related (PR) proteins with direct antimicrobial or anti-insect activity. Trees have evolved some unique defence mechanisms compared with well-studied model plants, which are mostly herbaceous annuals. The genome sequence of Eucalyptus grandis W. Hill ex Maiden has recently become available and provides a resource to extend our understanding of defence in large woody perennials. This review synthesizes existing knowledge of defence mechanisms in model plants and tree species and features mechanisms that may be important for defence in Eucalyptus, such as anatomical variants and the role of chemicals and proteins. Based on the E. grandis genome sequence, we have identified putative PR proteins based on sequence identity to the previously described plant PR proteins. Putative orthologues for PR-1, PR-2, PR-4, PR-5, PR-6, PR-7, PR-8, PR-9, PR-10, PR-12, PR-14, PR-15 and PR-17 have been identified and compared with their orthologues in Populus trichocarpa Torr. & A. Gray ex Hook and Arabidopsis thaliana (L.) Heynh. The survey of PR genes in Eucalyptus provides a first step in identifying defence gene targets that may be employed for protection of the species in future. Genomic resources available for Eucalyptus are discussed and approaches for improving resistance in these hardwood trees, earmarked as a bioenergy source in future, are considered.


Assuntos
Eucalyptus/genética , Eucalyptus/imunologia , Imunidade Vegetal , Proteínas de Plantas/genética , Eucalyptus/metabolismo , Doenças das Plantas/etiologia , Doenças das Plantas/imunologia , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...