Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 119(18): 182503, 2017 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-29219585

RESUMO

The gamma strength function and level density of 1^{-} states in ^{96}Mo have been extracted from a high-resolution study of the (p[over →], p[over →]^{'}) reaction at 295 MeV and extreme forward angles. By comparison with compound nucleus γ decay experiments, this allows a test of the generalized Brink-Axel hypothesis in the energy region of the pygmy dipole resonance. The Brink-Axel hypothesis is commonly assumed in astrophysical reaction network calculations and states that the gamma strength function in nuclei is independent of the structure of the initial and final state. The present results validate the Brink-Axel hypothesis for ^{96}Mo and provide independent confirmation of the methods used to separate gamma strength function and level density in γ decay experiments.

2.
Phys Rev Lett ; 118(21): 212502, 2017 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-28598677

RESUMO

The E2/M1 multipole mixing ratio δ_{1→2} of the 1_{sc}^{+}→2_{1}^{+} γ-ray decay in ^{156}Gd and hence the isovector E2 transition rate of the scissors mode of a well-deformed rotational nucleus has been measured for the first time. It has been obtained from the angular distribution of an artificial quasimonochromatic linearly polarized γ-ray beam of energy 3.07(6) MeV scattered inelastically off an isotopically highly enriched ^{156}Gd target. The data yield first direct support for the deformation dependence of effective proton and neutron quadrupole boson charges in the framework of algebraic nuclear models. First evidence for a low-lying J^{π}=2^{+} member of the rotational band of states on top of the 1^{+} band head is obtained, too, indicating a significant signature splitting in the K=1 scissors mode rotational band.

3.
Phys Rev Lett ; 117(17): 172503, 2016 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-27824471

RESUMO

BACKGROUND: Type II shell evolution has recently been identified as a microscopic cause for nuclear shape coexistence. PURPOSE: Establish a low-lying rotational band in ^{96}Zr. METHODS: High-resolution inelastic electron scattering and a relative analysis of transition strengths are used. RESULTS: The B(E2;0_{1}^{+}→2_{2}^{+}) value is measured and electromagnetic decay strengths of the 2_{2}^{+} state are deduced. CONCLUSIONS: Shape coexistence is established for ^{96}Zr. Type II shell evolution provides a systematic and quantitative mechanism to understand deformation at low excitation energies.

4.
Phys Rev Lett ; 111(17): 172501, 2013 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-24206482

RESUMO

The nucleus (154)Gd is located in a region of the nuclear chart where rapid changes of nuclear deformation occur as a function of particle number. It was investigated using a combination of γ-ray scattering experiments and a γγ-coincidence study following electron capture decay of (154)Tb(m). A novel decay channel from the scissors mode to the first excited 0(+) state was observed. Its transition strength was determined to B(M1;1(sc)(+)→0(2)(+))=0.031(4)µ(N)(2). The properties of the scissors mode of (154)Gd imply a much larger matrix element than previously thought for the neutrinoless double-ß decay to the 0(2)(+) state in such a shape-transitional region. Theory indicates an even larger effect for (150)Nd.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA