Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(18): eabq7553, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37146152

RESUMO

The ventricular-subventricular zone (V-SVZ) is the largest neurogenic region of the postnatal forebrain, containing neural stem cells (NSCs) that emerge from both the embryonic pallium and subpallium. Despite of this dual origin, glutamatergic neurogenesis declines rapidly after birth, while GABAergic neurogenesis persists throughout life. We performed single-cell RNA sequencing of the postnatal dorsal V-SVZ for unraveling the mechanisms leading to pallial lineage germinal activity silencing. We show that pallial NSCs enter a state of deep quiescence, characterized by high bone morphogenetic protein (BMP) signaling, reduced transcriptional activity and Hopx expression, while in contrast, subpallial NSCs remain primed for activation. Induction of deep quiescence is paralleled by a rapid blockade of glutamatergic neuron production and differentiation. Last, manipulation of Bmpr1a demonstrates its key role in mediating these effects. Together, our results highlight a central role of BMP signaling in synchronizing quiescence induction and blockade of neuronal differentiation to rapidly silence pallial germinal activity after birth.


Assuntos
Ventrículos Laterais , Neurônios , Ventrículos Laterais/metabolismo , Diferenciação Celular/genética , Neurogênese , Análise de Célula Única
2.
Sci Rep ; 8(1): 16086, 2018 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-30382117

RESUMO

The subventricular zone (SVZ) is a region of ongoing postnatal germinal activity that shows complex spatial heterogeneity. For instance, different SVZ microdomains contain neural stem cells that express distinct transcription factors and generate different glial and neuronal progenies. These unique characteristics call for the development of new methods to integrate a spatial dimension to histological analyses performed in this germinal region. We developed "FlashMap", a semi-automatic software that allows the segmentation and rapid measurement of optical densities throughout the full SVZ coordinates. "FlashMap" generates easily readable two-dimensional heatmaps that can be superimposed onto three-dimensional reconstructions of the ventricular system for optimal spatial exploration. Accurate heatmaps can be obtained, even following serial section subsampling thereby reducing the amount of tissue and time required for histological analysis. We first illustrate the potential of "FlashMap" by spatially exploring the correlation of SVZ thickness and cellular density with germinal activity throughout its rostro-caudal coordinates. We then used "FlashMap" to analyse the spatial expression of the transcription factors Dlx2, Tbr2 and Hopx as well as of the immature neuronal marker Dcx, to demonstrate the suitability of this approach to explore the regional production of cells of distinct lineages by defined SVZ microdomains.


Assuntos
Biomarcadores/metabolismo , Ventrículos Laterais/metabolismo , Software , Animais , Animais Recém-Nascidos , Contagem de Células , Proteína Duplacortina , Ventrículos Laterais/citologia , Camundongos , Transcrição Gênica
3.
Stem Cell Reports ; 11(3): 770-783, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30174314

RESUMO

The largest diversity of neural lineages generated from the subventricular zone (SVZ) occurs early after birth and is regulated in a spatiotemporal manner depending on the expression of specific transcriptional cues. Transcriptomics and fate-mapping approaches were employed to explore the relationship between regional expression of transcription factors by neural stem cells (NSCs) and the specification of distinct neural lineages. Our results support an early priming of NSCs for the genesis of defined cell types depending on their spatial location in the SVZ and identify HOPX as a marker of a subpopulation primed toward astrocytic fates. Manipulation of HOPX expression, however, showed no effect on astrogenesis but resulted in marked changes in the number of NSCs and of their progenies. Taken together, our results highlight transcriptional and spatial heterogeneity of postnatal NSCs and reveal a key role for HOPX in controlling SVZ germinal activity.


Assuntos
Astrócitos/citologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Ventrículos Laterais/citologia , Células-Tronco Neurais/citologia , Neurogênese , Animais , Astrócitos/metabolismo , Linhagem da Célula , Ventrículos Laterais/crescimento & desenvolvimento , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/metabolismo , Neuroglia/citologia , Neuroglia/metabolismo , Transcriptoma
4.
Cell Rep ; 22(10): 2567-2574, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29514086

RESUMO

Progenitors of cortical glutamatergic neurons (Glu progenitors) are usually thought to switch fate before birth to produce astrocytes. We used fate-mapping approaches to show that a large fraction of Glu progenitors persist in the postnatal forebrain after closure of the cortical neurogenesis period. Postnatal Glu progenitors do not accumulate during embryonal development but are produced by embryonal radial glial cells that persist after birth in the dorsal subventricular zone and continue to give rise to cortical neurons, although with low efficiency. Single-cell RNA sequencing reveals a dysregulation of transcriptional programs, which parallels changes in m6A methylation and correlates with the gradual decline in cortical neurogenesis observed in vivo. Rescuing experiments show that postnatal progenitors are partially permissive to genetic and pharmacological manipulations. Our study provides an in-depth characterization of postnatal Glu progenitors and identifies potential therapeutic targets for promoting brain repair.


Assuntos
Córtex Cerebral/citologia , Regulação da Expressão Gênica no Desenvolvimento , Glutamatos/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurogênese , Transcrição Gênica , Animais , Animais Recém-Nascidos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular , Movimento Celular , Ventrículos Laterais/citologia , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo , Células Ganglionares da Retina/citologia , Análise de Célula Única
5.
Stem Cells ; 33(7): 2232-42, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25827345

RESUMO

Throughout postnatal life in mammals, neural stem cells (NSCs) are located in the subventricular zone (SVZ) of the lateral ventricles. The greatest diversity of neuronal and glial lineages they generate occurs during early postnatal life in a region-specific manner. In order to probe heterogeneity of the postnatal SVZ, we microdissected its dorsal and lateral walls at different postnatal ages and isolated NSCs and their immediate progeny based on their expression of Hes5-EGFP/Prominin1 and Ascl1-EGFP, respectively. Whole genome comparative transcriptome analysis revealed transcriptional regulators as major hallmarks that sustain postnatal SVZ regionalization. Manipulation of single genes encoding for locally enriched transcription factors (loss-of-function or ectopic gain-of-function in vivo) influenced NSC specification indicating that the fate of regionalized postnatal SVZ-NSCs can be readily modified. These findings reveal the pronounced transcriptional heterogeneity of the postnatal SVZ and provide targets to recruit region-specific lineages in regenerative contexts. Stem Cells 2015;33:2232-2242.


Assuntos
Ventrículos Laterais/fisiologia , Células-Tronco Neurais/citologia , Nicho de Células-Tronco/fisiologia , Fatores de Transcrição/metabolismo , Animais , Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Transcriptoma/fisiologia
6.
Cereb Cortex ; 23(4): 922-31, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22473896

RESUMO

The lateral ventricle (LV) of the adult rodent brain harbors neural stem cells (NSCs) that continue to generate new neurons throughout life. NSCs located in defined areas of the LV walls generate progenitors with distinct transcriptional profiles that are committed to specific neuronal fates. Here, we assessed if such diversity of NSCs also exist in the adult common marmoset, a widely used primate species in basic and clinical neuroscience research. We first investigated the 3D distributions of proliferative progenitors and committed neuroblasts in the marmoset forebrain. In addition to these maps, we assessed the spatial presence of divergent progenitor populations based on their expression of defined transcription factors, that is, Dlx2, Pax6, Tbr2, and Ngn2 which are differentially expressed by γ-aminobutyric acidergic versus glutamatergic progenitors in the adult rodent forebrain. In striking contrast to rodents, glutamatergic progenitors were only sparse in neonates and absent from the adult LV, whilst present in the hippocampus. Our analyses highlight major differences in the diversity of NSCs of the marmoset LV compared with rodents and emphasize the need to address NSCs diversity in evolutionary higher order mammals concomitantly to rodents.


Assuntos
Diferenciação Celular/fisiologia , Ventrículos Laterais/citologia , Células-Tronco Neurais/fisiologia , 3,3'-Diaminobenzidina , Fatores Etários , Animais , Animais Recém-Nascidos , Callithrix , Contagem de Células , Proteínas do Domínio Duplacortina , Imageamento Tridimensional , Antígeno Ki-67/metabolismo , Microscopia Confocal , Proteínas Associadas aos Microtúbulos/metabolismo , Neuropeptídeos/metabolismo , Fatores de Transcrição/metabolismo
7.
PLoS One ; 7(11): e49087, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23166605

RESUMO

Recent studies suggest that the subventricular zone (SVZ) of the lateral ventricle is populated by heterogeneous populations of stem and progenitor cells that, depending on their exact location, are biased to acquire specific neuronal fates. This newly described heterogeneity of SVZ stem and progenitor cells underlines the necessity to develop methods for the accurate quantification of SVZ stem and progenitor subpopulations. In this study, we provide 3-dimensional topographical maps of slow cycling "stem" cells and progenitors based on their unique cell cycle properties. These maps revealed that both cell populations are present throughout the lateral ventricle wall as well as in discrete regions of the dorsal wall. Immunodetection of transcription factors expressed in defined progenitor populations further reveals that divergent lineages have clear regional enrichments in the rostro-caudal as well as in the dorso-ventral span of the lateral ventricle. Thus, progenitors expressing Tbr2 and Dlx2 were confined to dorsal and dorso-lateral regions of the lateral ventricle, respectively, while Mash1+ progenitors were more homogeneously distributed. All cell populations were enriched in the rostral-most region of the lateral ventricle. This diversity and uneven distribution greatly impede the accurate quantification of SVZ progenitor populations. This is illustrated by measuring the coefficient of error of estimates obtained by using increasing section sampling interval. Based on our empirical data, we provide such estimates for all progenitor populations investigated in this study. These can be used in future studies as guidelines to judge if the precision obtained with a sampling scheme is sufficient to detect statistically significant differences between experimental groups if a biological effect is present. Altogether, our study underlines the need to consider the SVZ of the lateral ventricle as a complex 3D structure and define methods to accurately assess neural stem cells or progenitor diversity and population sizes in physiological or experimental paradigms.


Assuntos
Mapeamento Encefálico/métodos , Linhagem da Célula/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Ventrículos Laterais/citologia , Células-Tronco/citologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Homeodomínio/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células-Tronco/metabolismo , Proteínas com Domínio T/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...