Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(7): 4467-4472, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38319727

RESUMO

To date, only a small number of chemistries and chemical fueling strategies have been successfully used to operate artificial molecular motors. Here, we report the 360° directionally biased rotation of phenyl groups about a C-C bond, driven by a stepwise Appel reaction sequence. The motor molecule consists of a biaryl-embedded phosphine oxide and phenol, in which full rotation around the biaryl bond is blocked by the P-O oxygen atom on the rotor being too bulky to pass the oxygen atom on the stator. Treatment with SOCl2 forms a cyclic oxyphosphonium salt (removing the oxygen atom of the phosphine oxide), temporarily linking the rotor with the stator. Conformational exchange via ring flipping then allows the rotor and stator to twist back and forth past the previous limit of rotation. Subsequently, the ring opening of the tethered intermediate with a chiral alcohol occurs preferentially through a nucleophilic attack on one face. Thus, the original phosphine oxide is reformed with net directional rotation about the biaryl bond over the course of the two-step reaction sequence. Each repetition of SOCl2-chiral alcohol additions generates another directionally biased rotation. Using the same reaction sequence on a derivative of the motor molecule that forms atropisomers rather than fully rotating 360° results in enantioenrichment, suggesting that, on average, the motor molecule rotates in the "wrong" direction once every three fueling cycles. The interconversion of phosphine oxides and cyclic oxyphosphonium groups to form temporary tethers that enable a rotational barrier to be overcome directionally adds to the strategies available for generating chemically fueled kinetic asymmetry in molecular systems.

2.
J Phys Chem C Nanomater Interfaces ; 128(3): 1413-1422, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38293692

RESUMO

The addition of a lateral alkyl chain is a well-known strategy to reduce π-stacked ensembles of molecules in solution, with the intention to minimize the interactions between the molecules' backbones. In this paper, we study whether this concept generalizes to single-molecule junctions by using a combination of mechanically controllable break junction (MCBJ) measurements and clustering-based data analysis with two small series of model compounds decorated with various bulky groups. The systematic study suggests that introducing alkyl side chains also favors the formation of electrode-molecule configurations that are not observed in their absence, thereby inducing broadening of the conductance peak in the one-dimensional histograms. Thus, the introduction of alkyl chains in aromatic compounds for molecular electronics must be carefully designed and optimized for the specific purpose, balancing between increased solubility and the possibility of additional junction configurations.

3.
Chemistry ; 30(16): e202303798, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38214886

RESUMO

Chiral organic molecules possessing high quantum yields, circular dichroism, and circularly polarized luminescence values have great potential as optically active materials for future applications. Recently, the identification of a promising class of inherently chiral compounds was reported, namely macrocyclic 1,3-butadiyne-linked pseudo-meta[2.2]paracyclophanes, displaying high circular dichroism and related gabs values albeit modest quantum yields. Increasing the quantum yields in an attempt to get bright circularly polarized light emitters, the high-yielding heterocyclization of those 1,3-butadiyne bridges resulting in macrocyclic 2,5-thienyls-linked pseudo-meta [2.2]paracyclophanes is herein described. The chiroptical properties of both, the previously reported 1,3-butadiyne, and the novel 2,5-thienyl bridged macrocycles of various sizes, are experimentally recorded, and theoretically described using density-functional theory.

4.
Chemistry ; 28(53): e202202706, 2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36084181

RESUMO

Invited for the cover of this issue is the group of Marcel Mayor at the University of Basel with co-workers Olaf Fuhr and Dieter Fenske from Karlsruhe Institute of Technology. The image depicts the studied all-carbon polygon shaped macrocycles along with their intense circular dichroism spectra in the background. The bright light within the macrocycles displays its efficient conjugation. Read the full text of the article at 10.1002/chem.202201764.

5.
Chem Sci ; 13(27): 8017-8024, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35919422

RESUMO

Intra- and intermolecular interactions are dominating chemical processes, and their concerted interplay enables complex nonequilibrium states like life. While the responsible basic forces are typically investigated spectroscopically, a conductance measurement to probe and control these interactions in a single molecule far out of equilibrium is reported here. Specifically, by separating macroscopic metal electrodes, two π-conjugated, bridge-connected porphyrin decks are peeled off on one side, but compressed on the other side due to the covalent mechanical fixation. We observe that the conductance response shows an exceptional exponential rise by two orders of magnitude in individual breaking events during the stretching. Theoretical studies atomistically explain the measured conductance behavior by a mechanically activated increase in through-bond transport and a simultaneous strengthening of through-space coupling. Our results not only reveal the various interacting intramolecular transport channels in a molecular set of levers, but also the molecules' potential to serve as molecular electro-mechanical sensors and switches.

6.
Chemistry ; 28(53): e202201764, 2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-35781897

RESUMO

The synthetic access to macrocyclic molecular topologies with interesting photophysical properties has greatly improved thanks to the successful implementation of organic and inorganic corner units. Based on recent reports, we realized that pseudo-meta [2.2]paracyclophanes (PCPs) might serve as optimal corner units for constructing 3D functional materials, owing to their efficient electronic communication, angled substituents and planar chirality. Herein, we report the synthesis, characterization and optical properties of four novel all-carbon enantiopure macrocycles bearing three to six pseudo-meta PCPs linked by 1,3-butadiyne units. The macrocycles were obtained by a single step from enantiopure, literature-known dialkyne pseudo-meta PCP and were unambiguously identified and characterized by state of the art spectroscopic methods and in part even by x-ray crystallography. By comparing the optical properties to relevant reference compounds, it is shown that the pseudo-meta PCP subunit effectively elongates the conjugated system throughout the macrocyclic backbone, such that already the smallest macrocycle consisting of only three subunits reaches a polymer-like conjugation length. Additionally, it is shown that the chiral pseudo-meta PCPs induce a remarkable chiroptical response in the respective macrocycles, reaching unprecedented high molar circular dichroism values for all-carbon macrocycles of up to 1307 L mol-1  cm-1 .

7.
Nanoscale ; 14(3): 984-992, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34989747

RESUMO

The possibility to study quantum interference phenomena at ambient conditions is an appealing feature of molecular electronics. By connecting two porphyrins in a cofacial cyclophane, we create an attractive platform for mechanically controlling electric transport through the intramolecular extent of π-orbital overlap of the porphyrins facing each other and through the angle of xanthene bridges with regard to the porphyrin planes. We analyze theoretically the evolution of molecular configurations in the pulling process and the corresponding changes in electric conduction by combining density functional theory (DFT) with Landauer scattering theory of phase-coherent elastic transport. Predicted conductances during the stretching process show order of magnitude variations caused by two robust destructive quantum interference features that span through the whole electronic gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO). Mechanically-controlled break junction (MCBJ) experiments at room temperature verify the mechanosensitive response of the molecular junctions. During the continuous stretching of the molecule, they show conductance variations of up to 1.5 orders of magnitude over single breaking events. Uncommon triple- and quadruple-frequency responses are observed in periodic electrode modulation experiments with amplitudes of up to 10 Å. This further confirms the theoretically predicted double transmission dips caused by the spatial and energetic rearrangement of molecular orbitals, with contributions from both through-space and through-bond transport.

8.
Nanoscale ; 13(37): 15500-15525, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34558586

RESUMO

Direct measurement of single-molecule electrical transparency by break junction experiments has become a major field of research over the two last decades. This review specifically and comprehensively highlights the use of porphyrins as molecular components and discusses their potential use for the construction of future devices. Throughout the review, the features provided by porphyrins, such as low level misalignments and very low attenuation factors, are shown with numerous examples, illustrating the potential and limitations of these molecular junctions, as well as differences emerging from applied integration/investigation techniques.

9.
J Org Chem ; 85(23): 15072-15081, 2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33166468

RESUMO

Porphyrin cyclophane 1, consisting of two rigidly fixed but still movable cofacial porphyrins and exposing acetate-masked thiols in opposed directions of the macrocycle, is designed, synthesized, and characterized. The functional cyclophane 1, as pioneer of mechanosensitive 3D materials, forms stable single-molecule junctions in a mechanically controlled break-junction setup. Its reliable integration in a single-molecule junction is a fundamental prerequisite to explore the potential of these structures as mechanically triggered functional units and devices.

10.
J Org Chem ; 85(1): 118-128, 2020 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-31687814

RESUMO

The bowl-shaped, 3-fold interlinked porphyrin dimer 2 was obtained in respectable yields during macrocyclization attempts. Its bicyclic structure, consisting of a macrocycle made of a pair of acetylene interlinked tetraphenylporphyrins which are additionally linked by a C-C bond interlinking two pyrrole subunits, has been confirmed spectroscopically (2D-NMR, UV/vis, HR-MALDI-ToF MS). Late-stage functionalization provided the structural analogue 1 with acetyl-protected terminal thiol anchor groups enabling single molecule transport investigations in a mechanically controlled break junction experiment. The formation of single-molecule junctions was observed, displaying large variations in the observed conductance values pointing at a rich diversity in the molecular junctions.

11.
Chem Sci ; 10(36): 8299-8305, 2019 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-31803408

RESUMO

Porphyrin derivatives are key components in natural machinery enabling us to store sunlight as chemical energy. In spite of their prominent role in cascades separating electrical charges and their potential as sensitizers in molecular devices, reports concerning their electronic transport characteristics are inconsistent. Here we report a systematic investigation of electronic transport paths through single porphyrin junctions. The transport through seven structurally related porphyrin derivatives was repeatedly measured in an automatized mechanically controlled break-junction set-up and the recorded data were analyzed by an unsupervised clustering algorithm. The correlation between the appearances of similar clusters in particular sub-sets of the porphyrins with a common structural motif allowed us to assign the corresponding current path. The small series of model porphyrins allowed us to identify and distinguish three different electronic paths covering more than four orders of magnitude in conductance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...