Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep Med ; 1(4): 100056, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-33205063

RESUMO

Fibrosis, or the accumulation of extracellular matrix, is a common feature of many chronic diseases. To interrogate core molecular pathways underlying fibrosis, we cross-examine human primary cells from various tissues treated with TGF-ß, as well as kidney and liver fibrosis models. Transcriptome analyses reveal that genes involved in fatty acid oxidation are significantly perturbed. Furthermore, mitochondrial dysfunction and acylcarnitine accumulation are found in fibrotic tissues. Substantial downregulation of the PGC1α gene is evident in both in vitro and in vivo fibrosis models, suggesting a common node of metabolic signature for tissue fibrosis. In order to identify suppressors of fibrosis, we carry out a compound library phenotypic screen and identify AMPK and PPAR as highly enriched targets. We further show that pharmacological treatment of MK-8722 (AMPK activator) and MK-4074 (ACC inhibitor) reduce fibrosis in vivo. Altogether, our work demonstrate that metabolic defect is integral to TGF-ß signaling and fibrosis.


Assuntos
Fibrose/genética , Fibrose/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Adenilato Quinase/metabolismo , Animais , Benzimidazóis/farmacologia , Células Cultivadas , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Humanos , Rim/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Especificidade de Órgãos/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Piridinas/farmacologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Transcriptoma/genética , Fator de Crescimento Transformador beta/metabolismo
2.
J Pharmacol Exp Ther ; 368(3): 514-523, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30606762

RESUMO

Thiazolidinediones (TZDs) are peroxisome proliferator-activated receptor γ (PPARγ) agonists that represent an effective class of insulin-sensitizing agents; however, clinical use is associated with weight gain and peripheral edema. To elucidate the role of PPARγ expression in endothelial cells (ECs) in these side effects, EC-targeted PPARγ knockout (Pparg ΔEC) mice were placed on a high-fat diet to promote PPARγ agonist-induced plasma volume expansion, and then treated with the TZD rosiglitazone. Compared with Pparg-floxed wild-type control (Pparg f/f) mice, Pparg ΔEC treated with rosiglitazone are resistant to an increase in extracellular fluid, water content in epididymal and inguinal white adipose tissue, and plasma volume expansion. Interestingly, histologic assessment confirmed significant rosiglitazone-mediated capillary dilation within white adipose tissue of Pparg f/f mice, but not Pparg ΔEC mice. Analysis of ECs isolated from untreated mice in both strains suggested the involvement of changes in endothelial junction formation. Specifically, compared with cells from Pparg f/f mice, Pparg ΔEC cells had a 15-fold increase in focal adhesion kinase, critically important in EC focal adhesions, and >3-fold significant increase in vascular endothelial cadherin, the main component of focal adhesions. Together, these results indicate that rosiglitazone has direct effects on the endothelium via PPARγ activation and point toward a critical role for PPARγ in ECs during rosiglitazone-mediated plasma volume expansion.


Assuntos
Tecido Adiposo/metabolismo , Células Endoteliais/metabolismo , Hipoglicemiantes/farmacologia , PPAR gama/deficiência , Rosiglitazona/farmacologia , Remodelação Vascular/fisiologia , Tecido Adiposo/irrigação sanguínea , Tecido Adiposo/efeitos dos fármacos , Animais , Células Endoteliais/efeitos dos fármacos , Deleção de Genes , Masculino , Camundongos , Camundongos Transgênicos , PPAR gama/genética , Volume Plasmático/efeitos dos fármacos , Volume Plasmático/fisiologia , Remodelação Vascular/efeitos dos fármacos
3.
Artigo em Inglês | MEDLINE | ID: mdl-28971604

RESUMO

Multiple integrins have been implicated in modulating renal function. Modulation of integrin function can lead to pathophysiological processes associated with diabetic nephropathy such as alterations in the glomerular filtration barrier and kidney fibrosis. The complexity of these pathophysiological changes implies that multiple integrin subtypes might need to be targeted to ameliorate the progression of renal disease. To address this hypothesis, we investigated the effects of MK-0429, a compound that was originally developed as an αvß3 inhibitor for the treatment of osteoporosis, on renal function and fibrosis. We demonstrated that MK-0429 is an equipotent pan-inhibitor of multiple av integrins. MK-0429 dose-dependently inhibited podocyte motility and also suppressed TGF-ß-induced fibrosis marker gene expression in kidney fibroblasts. Moreover, in the obese ZSF1 rat model of diabetic nephropathy, chronic treatment with MK-0429 resulted in significant reduction in proteinuria, kidney fibrosis, and collagen accumulation. In summary, our results suggest that inhibition of multiple integrin subtypes might lead to meaningful impact on proteinuria and renal fibrosis in diabetic nephropathy.


Assuntos
Nefropatias Diabéticas/tratamento farmacológico , Marcadores Genéticos/efeitos dos fármacos , Integrina alfaV/metabolismo , Rim/fisiopatologia , Naftiridinas/administração & dosagem , Propionatos/administração & dosagem , Animais , Linhagem Celular , Colágeno/metabolismo , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/fisiopatologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Rim/efeitos dos fármacos , Rim/metabolismo , Testes de Função Renal , Masculino , Naftiridinas/farmacologia , Propionatos/farmacologia , Ratos
4.
J Lipid Res ; 58(8): 1561-1578, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28583918

RESUMO

GPR40 and GPR120 are fatty acid sensors that play important roles in glucose and energy homeostasis. GPR40 potentiates glucose-dependent insulin secretion and demonstrated in clinical studies robust glucose lowering in type 2 diabetes. GPR120 improves insulin sensitivity in rodents, albeit its mechanism of action is not fully understood. Here, we postulated that the antidiabetic efficacy of GPR40 could be enhanced by coactivating GPR120. A combination of GPR40 and GPR120 agonists in db/db mice, as well as a single molecule with dual agonist activities, achieved superior glycemic control compared with either monotherapy. Compared with a GPR40 selective agonist, the dual agonist improved insulin sensitivity in ob/ob mice measured by hyperinsulinemic-euglycemic clamp, preserved islet morphology, and increased expression of several key lipolytic genes in adipose tissue of Zucker diabetic fatty rats. Novel insights into the mechanism of action for GPR120 were obtained. Selective GPR120 activation suppressed lipolysis in primary white adipocytes, although this effect was attenuated in adipocytes from obese rats and obese rhesus, and sensitized the antilipolytic effect of insulin in rat and rhesus primary adipocytes. In conclusion, GPR120 agonism enhances insulin action in adipose tissue and yields a synergistic efficacy when combined with GPR40 agonism.


Assuntos
Tecido Adiposo/metabolismo , Diabetes Mellitus Experimental/metabolismo , Lipólise , Receptores Acoplados a Proteínas G/metabolismo , Tecido Adiposo/efeitos dos fármacos , Animais , Células CHO , Cricetinae , Cricetulus , Diabetes Mellitus Experimental/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Resistência à Insulina , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/fisiopatologia , Lipólise/efeitos dos fármacos , Masculino , Camundongos , Ratos , Receptores Acoplados a Proteínas G/agonistas
5.
Am J Physiol Endocrinol Metab ; 312(4): E235-E243, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28143858

RESUMO

Insulin resistance and diabetes can develop spontaneously with obesity and aging in rhesus monkeys, highly similar to the natural history of obesity, insulin resistance, and progression to type 2 diabetes in humans. The current studies in obese rhesus were undertaken to assess hepatic and adipose contributions to systemic insulin resistance-currently, a gap in our knowledge-and to benchmark the responses to pioglitazone (PIO). A two-step hyperinsulinemic-euglycemic clamp, with tracer-based glucose flux estimates, was used to measure insulin resistance, and in an intervention study was repeated following 6 wk of PIO treatment (3 mg/kg). Compared with lean healthy rhesus, obese rhesus has a 60% reduction of glucose utilization during a high insulin infusion and markedly impaired suppression of lipolysis, which was evident at both low and high insulin infusion. However, obese dysmetabolic rhesus manifests only mild hepatic insulin resistance. Six-week PIO treatment significantly improved skeletal muscle and adipose insulin resistance (by ~50%). These studies strengthen the concept that insulin resistance in obese rhesus closely resembles human insulin resistance and indicate the value of obese rhesus for appraising new insulin-sensitizing therapeutics.


Assuntos
Tecido Adiposo/metabolismo , Hipoglicemiantes/farmacologia , Resistência à Insulina/fisiologia , Fígado/metabolismo , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Tiazolidinedionas/farmacologia , Tecido Adiposo/efeitos dos fármacos , Animais , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Técnica Clamp de Glucose , Hipoglicemiantes/uso terapêutico , Lipólise/fisiologia , Fígado/efeitos dos fármacos , Macaca mulatta , Músculo Esquelético/efeitos dos fármacos , Obesidade/tratamento farmacológico , Pioglitazona , Tiazolidinedionas/uso terapêutico
6.
J Lipid Res ; 54(1): 177-88, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23103473

RESUMO

The use of nicotinic acid to treat dyslipidemia is limited by induction of a "flushing" response, mediated in part by the interaction of prostaglandin D(2) (PGD(2)) with its G-protein coupled receptor, DP1 (Ptgdr). The impact of DP1 blockade (genetic or pharmacologic) was assessed in experimental murine models of atherosclerosis. In Ptgdr(-/-)ApoE(-/-) mice versus ApoE(-/-) mice, both fed a high-fat diet, aortic cholesterol content was modestly higher (1.3- to 1.5-fold, P < 0.05) in Ptgdr(-/-)ApoE(-/-) mice at 16 and 24 weeks of age, but not at 32 weeks. In multiple ApoE(-/-) mouse studies, a DP1-specific antagonist, L-655, generally had a neutral to beneficial effect on aortic lipids in the presence or absence of nicotinic acid treatment. In a separate study, a modest increase in some atherosclerotic measures was observed with L-655 treatment in Ldlr(-/-) mice fed a high-fat diet for 8 weeks; however, this effect was not sustained for 16 or 24 weeks. In the same study, treatment with nicotinic acid alone generally decreased plasma and/or aortic lipids, and addition of L-655 did not negate those beneficial effects. These studies demonstrate that inhibition of DP1, with or without nicotinic acid treatment, does not lead to consistent or sustained effects on plaque burden in mouse atherosclerotic models.


Assuntos
Técnicas de Silenciamento de Genes , Niacina/farmacologia , Placa Aterosclerótica/tratamento farmacológico , Placa Aterosclerótica/metabolismo , Receptores Imunológicos/antagonistas & inibidores , Receptores Imunológicos/genética , Receptores de Prostaglandina/antagonistas & inibidores , Receptores de Prostaglandina/genética , Animais , Aorta/efeitos dos fármacos , Aorta/metabolismo , Apolipoproteínas E/deficiência , Colesterol/metabolismo , Interações Medicamentosas , Determinação de Ponto Final , Feminino , Humanos , Masculino , Camundongos , Niacina/uso terapêutico , Placa Aterosclerótica/genética , Receptores Imunológicos/deficiência , Receptores de LDL/deficiência , Receptores de Prostaglandina/deficiência , Receptores de Tromboxano A2 e Prostaglandina H2/metabolismo
7.
Circ Cardiovasc Genet ; 4(6): 595-604, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22010137

RESUMO

BACKGROUND: Atherosclerosis is a complex disease requiring improvements in diagnostic techniques and therapeutic treatments. Both improvements will be facilitated by greater exploration of the biology of atherosclerotic plaque. To this end, we carried out large-scale gene expression analysis of human atherosclerotic lesions. METHODS AND RESULTS: Whole genome expression analysis of 101 plaques from patients with peripheral artery disease identified a robust gene signature (1514 genes) that is dominated by processes related to Toll-like receptor signaling, T-cell activation, cholesterol efflux, oxidative stress response, inflammatory cytokine production, vasoconstriction, and lysosomal activity. Further analysis of gene expression in microdissected carotid plaque samples revealed that this signature is differentially expressed in macrophage-rich and smooth muscle cell-containing regions. A quantitative PCR gene expression panel and inflammatory composite score were developed on the basis of the atherosclerotic plaque gene signature. When applied to serial sections of carotid plaque, the inflammatory composite score was observed to correlate with histological and morphological features related to plaque vulnerability. CONCLUSIONS: The robust mRNA expression signature identified in the present report is associated with pathological features of vulnerable atherosclerotic plaque and may be useful as a source of biomarkers and targets of novel antiatherosclerotic therapies.


Assuntos
Perfilação da Expressão Gênica , Placa Aterosclerótica/genética , Placa Aterosclerótica/imunologia , Biomarcadores , Feminino , Humanos , Macrófagos/imunologia , Masculino , Dados de Sequência Molecular , Proteínas/genética , Proteínas/imunologia
8.
Lipids Health Dis ; 9: 61, 2010 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-20540749

RESUMO

BACKGROUND: Cholesterol deposition in arterial wall drives atherosclerosis. The key goal of this study was to examine the relationship between plaque cholesterol content and patient characteristics that typically associate with disease state and lesion vulnerability. Quantitative assays for free cholesterol, cholesteryl ester, triglyceride, and protein markers in atherosclerotic plaque were established and applied to plaque samples from multiple patients and arterial beds (Carotid and peripheral arteries; 98 lesions in total). RESULTS: We observed a lower cholesterol level in restenotic than primary peripheral plaque. We observed a trend toward a higher level in symptomatic than asymptomatic carotid plaque. Peripheral plaque from a group of well-managed diabetic patients displayed a weak trend of more free cholesterol deposition than plaque from non-diabetic patients. Plaque triglyceride content exhibited less difference in the same comparisons. We also measured cholesterol in multiple segments within one carotid plaque sample, and found that cholesterol content positively correlated with markers of plaque vulnerability, and negatively correlated with stability markers. CONCLUSIONS: Our results offer important biological validation of cholesterol as a key lipid marker for plaque severity. Results also suggest cholesterol is a more sensitive plaque marker than routine histological staining for neutral lipids.


Assuntos
Aterosclerose/patologia , Colesterol/análise , Índice de Gravidade de Doença , Artérias/patologia , Aterosclerose/diagnóstico , Biomarcadores , Ésteres do Colesterol/análise , Humanos , Proteínas/análise , Triglicerídeos/análise
9.
Eur J Pharmacol ; 623(1-3): 148-54, 2009 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-19765579

RESUMO

Inhibition of dipeptidyl peptidase-4 (DPP-4) activity has been shown to improve glycemic control in patients with type 2 diabetes by prolonging and potentiating the actions of incretin hormones. This study is designed to determine the effects of the DPP-4 inhibitor sitagliptin on improving islet function in a mouse model of insulin resistance and insulin secretion defects. ICR mice were pre-treated with high fat diet and a low dose of streptozotocin to induce insulin resistance and impaired insulin secretion, respectively. Diabetic mice were treated with sitagliptin or the sulfonylurea agent glipizide as admixture to high fat diet for ten weeks. Sustained reduction of blood glucose, HbA(1c), circulating glucagon and improvement in oral glucose tolerance were observed in mice treated with sitagliptin. In contrast, glipizide improved glycemic control only during the early weeks and to a lesser degree compared to sitagliptin, and had no effect on circulating glucagon levels or glucose tolerance. The improvement in glycemic control in sitagliptin-treated mice was associated with a significant increase in glucose-dependent insulin secretion in both perfused pancreas and isolated islets. Importantly, in contrast to the lack of effect by glipizide, sitagliptin significantly restored beta and alpha cell mass as well as alpha/beta cell ratio. These data indicate that DPP-4 inhibition by sitagliptin provided better overall improvement of glycemic control compared to glipizide in the high fat diet/streptozotocin induced diabetic mouse model. The ability of sitagliptin to enhance islet cell function may offer insight into the potential for disease modification.


Assuntos
Glicemia/análise , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Inibidores da Dipeptidil Peptidase IV , Glipizida/uso terapêutico , Hipoglicemiantes/uso terapêutico , Ilhotas Pancreáticas/efeitos dos fármacos , Pirazinas/uso terapêutico , Triazóis/uso terapêutico , Animais , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Tipo 2/fisiopatologia , Gorduras na Dieta/administração & dosagem , Dipeptidil Peptidase 4 , Glipizida/metabolismo , Glucagon/sangue , Peptídeo 1 Semelhante ao Glucagon/sangue , Hemoglobinas Glicadas/análise , Hipoglicemiantes/metabolismo , Insulina/sangue , Insulina/metabolismo , Secreção de Insulina , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Antígeno Ki-67/metabolismo , Lipídeos/sangue , Fígado/química , Masculino , Camundongos , Camundongos Endogâmicos ICR , Tamanho do Órgão , Pirazinas/metabolismo , Fosfato de Sitagliptina , Triazóis/metabolismo , Triglicerídeos/análise
10.
Diabetes ; 55(6): 1695-704, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16731832

RESUMO

Inhibitors of dipeptidyl peptidase-4 (DPP-4), a key regulator of the actions of incretin hormones, exert antihyperglycemic effects in type 2 diabetic patients. A major unanswered question concerns the potential ability of DPP-4 inhibition to have beneficial disease-modifying effects, specifically to attenuate loss of pancreatic beta-cell mass and function. Here, we investigated the effects of a potent and selective DPP-4 inhibitor, an analog of sitagliptin (des-fluoro-sitagliptin), on glycemic control and pancreatic beta-cell mass and function in a mouse model with defects in insulin sensitivity and secretion, namely high-fat diet (HFD) streptozotocin (STZ)-induced diabetic mice. Significant and dose-dependent correction of postprandial and fasting hyperglycemia, HbA(1c), and plasma triglyceride and free fatty acid levels were observed in HFD/STZ mice following 2-3 months of chronic therapy. Treatment with des-fluoro-sitagliptin dose dependently increased the number of insulin-positive beta-cells in islets, leading to the normalization of beta-cell mass and beta-cell-to-alpha-cell ratio. In addition, treatment of mice with des-fluoro-sitagliptin, but not glipizide, significantly increased islet insulin content and improved glucose-stimulated insulin secretion in isolated islets. These findings suggest that DPP-4 inhibitors may offer long-lasting efficacy in the treatment of type 2 diabetes by modifying the courses of the disease.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Dipeptidil Peptidases e Tripeptidil Peptidases/antagonistas & inibidores , Células Secretoras de Insulina/efeitos dos fármacos , Pirazinas/farmacologia , Triazóis/farmacologia , Animais , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animais de Doenças , Dislipidemias/tratamento farmacológico , Dislipidemias/metabolismo , Glipizida/farmacologia , Hipoglicemiantes/farmacologia , Imuno-Histoquímica , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/fisiologia , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Pirazinas/química , Fosfato de Sitagliptina , Compostos de Sulfonilureia/farmacologia , Triazóis/química
11.
Endocrinology ; 147(9): 4252-62, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16728496

RESUMO

Peroxisome proliferator-activated receptor (PPAR)-gamma agonists are insulin sensitizers, whereas PPAR alpha agonists are lipid-lowering agents in humans. Chronic treatment with PPAR gamma agonists has been shown to prevent the onset of diabetes in young Zucker diabetic fatty (ZDF) rats; however, the effects of PPAR alpha agonists have not been well characterized in this model. Here we investigated chronic efficacy of PPAR alpha and nonthiazolidinedione (nTZD) PPAR gamma agonists on the onset of diabetes in 6-wk-old male ZDF rats. Whereas treatment with the nTZD PPAR gamma agonist completely prevented development of hyperglycemia, PPAR alpha activation was associated with lowering of food intake and body weight and reductions in fed and fasting hyperglycemia, with prevention of the hyperinsulinemic peak preceding the development of hyperglycemia in ZDF rats. Both compounds improved glucose tolerance during an oral glucose tolerance test with concomitant increases in insulin response. Such improvements of insulin secretion were associated with increased islet to total pancreatic area ratio and pancreatic insulin contents. Hyperinsulinemic-euglycemic clamp studies demonstrated that nTZD PPAR gamma reduced basal endogenous glucose production and increased insulin-stimulated glucose disposal, consistent with an improved insulin action as a cause of the improved glucose homeostasis. In contrast, activation of PPAR alpha did not significantly improve glucose metabolism during the hyperinsulinemic-euglycemic clamp. In conclusion, chronic treatment of ZDF rats with a PPAR gamma agonist completely prevented the onset of diabetes by improving both insulin action and secretion, whereas PPAR alpha agonism was partially effective, primarily by improving the pancreatic islet insulin response. Unlike the PPAR gamma agonist, the PPAR alpha agonist demonstrated efficacy without inducing body weight gain and cardiomegaly. This study suggests a possible role for PPAR alpha agonists in the prevention of type 2 diabetes mellitus.


Assuntos
Diabetes Mellitus Tipo 2/prevenção & controle , PPAR alfa/agonistas , PPAR gama/agonistas , Animais , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Jejum , Alimentos , Técnica Clamp de Glucose , Teste de Tolerância a Glucose , Homeostase , Hiperglicemia/prevenção & controle , Insulina/sangue , Insulina/farmacologia , Ilhotas Pancreáticas/patologia , Masculino , Músculo Esquelético/química , PPAR alfa/farmacologia , Ratos , Ratos Zucker , Triglicerídeos/análise
12.
J Clin Endocrinol Metab ; 90(4): 2412-9, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15671106

RESUMO

Melanin-concentrating hormone (MCH) exerts a positive regulation on appetite and binds to the G protein-coupled receptors, MCH1R and MCH2R. In rodents, MCH is produced by neurons in the lateral hypothalamus with projections to various hypothalamic and other brain sites. In the present study, MCH1R was shown, by immunocytochemistry, to be present in the human infundibular nucleus/median eminence, paraventricular nucleus, lateral hypothalamic area, and perifornical area, although in the latter two regions, only a few MCH1R-containing cells were found. In addition, MCH1R staining was found in nerve fibers in the periventricular nucleus, dorsomedial and ventromedial nucleus, suprachiasmatic nucleus, and tuberomammillary nucleus. A significant 1.6 times increase in the number of MCH1R cell body staining was found in the infundibular nucleus in postmortem brain material of cachectic patients, compared with matched controls, supporting a role for this receptor in energy homeostasis in the human.


Assuntos
Núcleo Arqueado do Hipotálamo/química , Caquexia/metabolismo , Receptores de Somatostatina/análise , Idoso , Idoso de 80 Anos ou mais , Animais , Feminino , Humanos , Hipotálamo/química , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Coelhos , Ratos
13.
Proc Natl Acad Sci U S A ; 100(11): 6825-30, 2003 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-12748388

RESUMO

Dipeptidyl peptidase IV (DP-IV), a member of the prolyl oligopeptidase family of peptidases, is involved in the metabolic inactivation of a glucose-dependent insulinotropic hormone, glucagon-like peptide 1 (GLP-1), and other incretin hormones. Here, we investigated the impact of DP-IV deficiency on body weight control and insulin sensitivity in mice. Whereas WT mice displayed accelerated weight gain and hyperinsulinemia when fed a high-fat diet (HFD), mice lacking the gene encoding DP-IV (DP-IV-/-) are refractory to the development of obesity and hyperinsulinemia. Pair-feeding and indirect calorimetry studies indicate that reduced food intake and increased energy expenditure accounted for the resistance to HFD-induced obesity in the DP-IV-/- mice. Ablation of DP-IV also is associated with elevated GLP-1 levels and improved metabolic control in these animals, resulting in improved insulin sensitivity, reduced pancreatic islet hypertrophy, and protection against streptozotocin-induced loss of beta cell mass and hyperglycemia. Together, these observations suggest that chronic deletion of DP-IV gene has significant impact on body weight control and energy homeostasis, providing validation of DP-IV inhibition as a viable therapeutic option for the treatment of metabolic disorders related to diabetes and obesity.


Assuntos
Dipeptidil Peptidase 4/metabolismo , Predisposição Genética para Doença , Resistência à Insulina , Obesidade/genética , Animais , Sequência de Bases , Primers do DNA , Dipeptidil Peptidase 4/genética , Hiperglicemia/induzido quimicamente , Imuno-Histoquímica , Masculino , Camundongos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Estreptozocina
14.
Brain Res ; 975(1-2): 10-21, 2003 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-12763589

RESUMO

The peroxisome proliferator-activated receptors (PPARs), PPARdelta, PPARgamma and PPARalpha, comprise a subclass of the supergene family of nuclear receptors. As such they are ligand-regulated transcription factors whose major effects are mediated by altering expression of target genes. PPARdelta has been shown to be ubiquitously expressed in mammals. However, its primary biological role(s) has yet to be defined. Several recent studies have demonstrated that PPARdelta is the most highly expressed PPAR isoform in the central nervous system, but ambiguity still exists as to the specific brain sub-regions and cells in which it is expressed. Here, utilizing novel, isoform-selective PPARdelta riboprobes and an anti-peptide antibody, we performed a series of in situ hybridization and immunolocalization studies to determine the distribution of PPARdelta in the central nervous system (CNS) of mice. We found that PPARdelta mRNA and protein is expressed throughout the brain, with particularly high levels in the entorhinal cortex, hypothalamus and hippocampus, and lower levels in the corpus callosum and caudate putamen. At the cellular level, PPARdelta mRNA and protein were found to be expressed in oligodendrocytes and neurons but not astrocytes. Such results suggest a role for PPARdelta in both myelination and neuronal functioning within the CNS.


Assuntos
Sistema Nervoso Central/metabolismo , Neurônios/metabolismo , Oligodendroglia/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Animais , Formação de Anticorpos , Northern Blotting , Western Blotting , Química Encefálica/genética , Química Encefálica/fisiologia , Células COS , Células Cultivadas , Sistema Nervoso Central/anatomia & histologia , Sistema Nervoso Central/citologia , Chlorocebus aethiops , Sondas de DNA , Imunofluorescência , Técnicas Imunoenzimáticas , Imuno-Histoquímica , Hibridização In Situ , Camundongos , RNA Mensageiro/análise , RNA Mensageiro/biossíntese , Receptores Citoplasmáticos e Nucleares/biossíntese , Reprodutibilidade dos Testes , Fatores de Transcrição/biossíntese , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...