Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Phys Rev Lett ; 129(11): 110402, 2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36154415

RESUMO

A quantum version of the Monge-Kantorovich optimal transport problem is analyzed. The transport cost is minimized over the set of all bipartite coupling states ρ^{AB} such that both of its reduced density matrices ρ^{A} and ρ^{B} of dimension N are fixed. We show that, selecting the quantum cost matrix to be proportional to the projector on the antisymmetric subspace, the minimal transport cost leads to a semidistance between ρ^{A} and ρ^{B}, which is bounded from below by the rescaled Bures distance and from above by the root infidelity. In the single-qubit case, we provide a semianalytic expression for the optimal transport cost between any two states and prove that its square root satisfies the triangle inequality and yields an analog of the Wasserstein distance of the order of 2 on the set of density matrices. We introduce an associated measure of proximity of quantum states, called swap fidelity, and discuss its properties and applications in quantum machine learning.

2.
Phys Rev E ; 105(3-1): 034201, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35428151

RESUMO

We study a damped kicked top dynamics of a large number of qubits (N→∞) and focus on an evolution of a reduced single-qubit subsystem. Each subsystem is subjected to the amplitude damping channel controlled by the damping constant r∈[0,1], which plays the role of the single control parameter. In the parameter range for which the classical dynamics is chaotic, while varying r we find the universal period-doubling behavior characteristic to one-dimensional maps: period-2 dynamics starts at r_{1}≈0.3181, while the next bifurcation occurs at r_{2}≈0.5387. In parallel with period-4 oscillations observed for r≤r_{3}≈0.5672, we identify a secondary bifurcation diagram around r≈0.544, responsible for a small-scale chaotic dynamics inside the attractor. The doubling of the principal bifurcation tree continues until r≤r_{∞}∼0.578, which marks the onset of the full scale chaos interrupted by the windows of the oscillatory dynamics corresponding to the Sharkovsky order. Finally, for r=1 the model reduces to the standard undamped chaotic kicked top.

3.
Phys Rev Lett ; 128(8): 080507, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35275648

RESUMO

The negative solution to the famous problem of 36 officers of Euler implies that there are no two orthogonal Latin squares of order six. We show that the problem has a solution, provided the officers are entangled, and construct orthogonal quantum Latin squares of this size. As a consequence, we find an example of the long-elusive Absolutely Maximally Entangled state AME(4,6) of four subsystems with six levels each, equivalently a 2-unitary matrix of size 36, which maximizes the entangling power among all bipartite unitary gates of this dimension, or a perfect tensor with four indices, each running from one to six. This special state deserves the appellation golden AME state, as the golden ratio appears prominently in its elements. This result allows us to construct a pure nonadditive quhex quantum error detection code ((3,6,2))_{6}, which saturates the Singleton bound and allows one to encode a six-level state into a triplet of such states.

4.
Phys Rev E ; 106(6-1): 064109, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36671111

RESUMO

The second law of thermodynamics imposes a fundamental asymmetry in the flow of events. The so-called thermodynamic arrow of time introduces an ordering that divides the system's state space into past, future, and incomparable regions. In this work, we analyze the structure of the resulting thermal cones, i.e., sets of states that a given state can thermodynamically evolve to (the future thermal cone) or evolve from (the past thermal cone). Specifically, for a d-dimensional classical state of a system interacting with a heat bath, we find explicit construction of the past thermal cone and the incomparable region. Moreover, we provide a detailed analysis of their behavior based on thermodynamic monotones given by the volumes of thermal cones. Results obtained apply also to other majorization-based resource theories (such as that of entanglement and coherence), since the partial ordering describing allowed state transformations is then the opposite of the thermodynamic order in the infinite temperature limit. Finally, we also generalize the construction of thermal cones to account for probabilistic transformations.


Assuntos
Temperatura Alta , Termodinâmica , Temperatura , Fatores de Tempo
5.
Entropy (Basel) ; 25(1)2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36673187

RESUMO

The distribution of entangled states is a key task of utmost importance for many quantum information processing protocols. A commonly adopted setup for distributing quantum states envisages the creation of the state in one location, which is then sent to (possibly different) distant receivers through some quantum channels. While it is undoubted and, perhaps, intuitively expected that the distribution of entangled quantum states is less efficient than that of product states, a thorough quantification of this inefficiency (namely, of the difference between the quantum-state transfer fidelity for entangled and factorized states) has not been performed. To this end, in this work, we consider n-independent amplitude-damping channels, acting in parallel, i.e., each, locally, on one part of an n-qubit state. We derive exact analytical results for the fidelity decrease, with respect to the case of product states, in the presence of entanglement in the initial state, for up to four qubits. Interestingly, we find that genuine multipartite entanglement has a more detrimental effect on the fidelity than two-qubit entanglement. Our results hint at the fact that, for larger n-qubit states, the difference in the average fidelity between product and entangled states increases with increasing single-qubit fidelity, thus making the latter a less trustworthy figure of merit.

6.
Phys Rev Lett ; 124(9): 090503, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32202887

RESUMO

Discrete structures in Hilbert space play a crucial role in finding optimal schemes for quantum measurements. We solve the problem of whether a complete set of five isoentangled mutually unbiased bases exists in dimension four, providing an explicit analytical construction. The reduced density matrices of these 20 pure states forming this generalized quantum measurement form a regular dodecahedron inscribed in a sphere of radius sqrt[3/20] located inside the Bloch ball of radius 1/2. Such a set forms a mixed-state 2-design-a discrete set of quantum states with the property that the mean value of any quadratic function of density matrices is equal to the integral over the entire set of mixed states with respect to the flat Hilbert-Schmidt measure. We establish necessary and sufficient conditions mixed-state designs need to satisfy and present general methods to construct them. Furthermore, it is shown that partial traces of a projective design in a composite Hilbert space form a mixed-state design, while decoherence of elements of a projective design yields a design in the classical probability simplex. We identify a distinguished two-qubit orthogonal basis such that four reduced states are evenly distributed inside the Bloch ball and form a mixed-state 2-design.

7.
Phys Rev Lett ; 123(14): 140403, 2019 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-31702198

RESUMO

To understand the typical dynamics of an open quantum system in continuous time, we introduce an ensemble of random Lindblad operators, which generate completely positive Markovian evolution in the space of the density matrices. The spectral properties of these operators, including the shape of the eigenvalue distribution in the complex plane, are evaluated by using methods of free probabilities and explained with non-Hermitian random matrix models. We also demonstrate the universality of the spectral features. The notion of an ensemble of random generators of Markovian quantum evolution constitutes a step towards categorization of dissipative quantum chaos.

8.
Entropy (Basel) ; 20(10)2018 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-33265834

RESUMO

We study entanglement properties of generic three-qubit pure states. First, we obtain the distributions of both the coefficients and the only phase in the five-term decomposition of Acín et al. for an ensemble of random pure states generated by the Haar measure on U ( 8 ) . Furthermore, we analyze the probability distributions of two sets of polynomial invariants. One of these sets allows us to classify three-qubit pure states into four classes. Entanglement in each class is characterized using the minimal Rényi-Ingarden-Urbanik entropy. Besides, the fidelity of a three-qubit random state with the closest state in each entanglement class is investigated. We also present a characterization of these classes in terms of the corresponding entanglement polytope. The entanglement classes related to stochastic local operations and classical communication (SLOCC) are analyzed as well from this geometric perspective. The numerical findings suggest some conjectures relating some of those invariants with entanglement properties to be ground in future analytical work.

9.
Artigo em Inglês | MEDLINE | ID: mdl-26274138

RESUMO

We investigate the level density for several ensembles of positive random matrices of a Wishart-like structure, W=XX(†), where X stands for a non-Hermitian random matrix. In particular, making use of the Cauchy transform, we study the free multiplicative powers of the Marchenko-Pastur (MP) distribution, MP(⊠s), which for an integer s yield Fuss-Catalan distributions corresponding to a product of s-independent square random matrices, X=X(1)⋯X(s). New formulas for the level densities are derived for s=3 and s=1/3. Moreover, the level density corresponding to the generalized Bures distribution, given by the free convolution of arcsine and MP distributions, is obtained. We also explain the reason of such a curious convolution. The technique proposed here allows for the derivation of the level densities for several other cases.

10.
Artigo em Inglês | MEDLINE | ID: mdl-24580192

RESUMO

Jarzynski equality and related fluctuation theorems can be formulated for various setups. Such an equality was recently derived for nonunitary quantum evolutions described by unital quantum operations, i.e., for completely positive, trace-preserving maps, which preserve the maximally mixed state. We analyze here a more general case of arbitrary quantum operations on finite systems and derive the corresponding form of the Jarzynski equality. It contains a correction term due to nonunitality of the quantum map. Bounds for the relative size of this correction term are established and they are applied for exemplary systems subjected to quantum channels acting on a finite-dimensional Hilbert space.

11.
Artigo em Inglês | MEDLINE | ID: mdl-24329326

RESUMO

Extremal spacings between eigenphases of random unitary matrices of size N pertaining to circular ensembles are investigated. Explicit probability distributions for the minimal spacing for various ensembles are derived for N=4. We study ensembles of tensor product of k random unitary matrices of size n which describe independent evolution of a composite quantum system consisting of k subsystems. In the asymptotic case, as the total dimension N=n(k) becomes large, the nearest neighbor distribution P(s) becomes Poissonian, but statistics of extreme spacings P(s(min)) and P(s(max)) reveal certain deviations from the Poissonian behavior.

12.
Phys Rev Lett ; 110(10): 101301, 2013 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-23521247

RESUMO

We show that, in order to preserve the equivalence principle until late times in unitarily evaporating black holes, the thermodynamic entropy of a black hole must be primarily entropy of entanglement across the event horizon. For such black holes, we show that the information entering a black hole becomes encoded in correlations within a tripartite quantum state, the quantum analogue of a one-time pad, and is only decoded into the outgoing radiation very late in the evaporation. This behavior generically describes the unitary evaporation of highly entangled black holes and requires no specially designed evolution. Our work suggests the existence of a matter-field sum rule for any fundamental theory.

13.
Phys Rev Lett ; 107(15): 150502, 2011 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-22107275

RESUMO

For a given pure state of a composite quantum system we analyze the product of its projections onto a set of locally orthogonal separable pure states. We derive a bound for this product analogous to the entropic uncertainty relations. For bipartite systems the bound is saturated for maximally entangled states and it allows us to construct a family of entanglement measures, we shall call collectibility. As these quantities are experimentally accessible, the approach advocated contributes to the task of experimental quantification of quantum entanglement, while for a three-qubit system it is capable to identify the genuine three-party entanglement.

14.
Phys Rev E Stat Nonlin Soft Matter Phys ; 83(6 Pt 1): 061118, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21797313

RESUMO

Squared singular values of a product of s square random Ginibre matrices are asymptotically characterized by probability distributions P(s)(x), such that their moments are equal to the Fuss-Catalan numbers of order s. We find a representation of the Fuss-Catalan distributions P(s)(x) in terms of a combination of s hypergeometric functions of the type (s)F(s-1). The explicit formula derived here is exact for an arbitrary positive integer s, and for s=1 it reduces to the Marchenko-Pastur distribution. Using similar techniques, involving the Mellin transform and the Meijer G function, we find exact expressions for the Raney probability distributions, the moments of which are given by a two-parameter generalization of the Fuss-Catalan numbers. These distributions can also be considered as a two-parameter generalization of the Wigner semicircle law.

15.
Phys Rev E Stat Nonlin Soft Matter Phys ; 81(6 Pt 2): 066209, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20866503

RESUMO

We analyze a model quantum dynamical system subjected to periodic interaction with an environment, which can describe quantum measurements. Under the condition of strong classical chaos and strong decoherence due to large coupling with the measurement device, the spectra of the evolution operator exhibit an universal behavior. A generic spectrum consists of a single eigenvalue equal to unity, which corresponds to the invariant state of the system, while all other eigenvalues are contained in a disk in the complex plane. Its radius depends on the number of the Kraus measurement operators and determines the speed with which an arbitrary initial state converges to the unique invariant state. These spectral properties are characteristic of an ensemble of random quantum maps, which in turn can be described by an ensemble of real random Ginibre matrices. This will be proven in the limit of large dimension.

16.
Phys Rev Lett ; 105(4): 040505, 2010 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-20867829

RESUMO

The mutual information between the sender of a classical message encoded in quantum carriers and a receiver is fundamentally limited by the Holevo quantity. Using strong subadditivity of entropy, we prove that the Holevo quantity is not larger than an exchange entropy. This implies an upper bound for coherent information. Moreover, restricting our attention to classical information, we bound the transmission distance between probability distributions by their entropic distance, which is a concave function of their Hellinger distance.

17.
Phys Rev E Stat Nonlin Soft Matter Phys ; 82(4 Pt 1): 040106, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21230226

RESUMO

Statistical properties of nonsymmetric real random matrices of size M, obtained as truncations of random orthogonal N×N matrices, are investigated. We derive an exact formula for the density of eigenvalues which consists of two components: finite fraction of eigenvalues are real, while the remaining part of the spectrum is located inside the unit disk symmetrically with respect to the real axis. In the case of strong nonorthogonality, M/N=const, the behavior typical to real Ginibre ensemble is found. In the case M=N-L with fixed L, a universal distribution of resonance widths is recovered.

18.
Phys Rev E Stat Nonlin Soft Matter Phys ; 69(5 Pt 2): 056205, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15244902

RESUMO

We present the results of experimental and theoretical study of irregular, tetrahedral microwave networks consisting of coaxial cables (annular waveguides) connected by T joints. The spectra of the networks were measured in the frequency range 0.0001-16 GHz in order to obtain their statistical properties such as the integrated nearest neighbor spacing distribution and the spectral rigidity Delta(3) (L). The comparison of our experimental and theoretical results shows that microwave networks can simulate quantum graphs with time reversal symmetry. In particular, we use the spectra of the microwave networks to study the periodic orbits of the simulated quantum graphs. We also present experimental study of directional microwave networks consisting of coaxial cables and Faraday isolators for which the time reversal symmetry is broken. In this case our experimental results indicate that spectral statistics of directional microwave networks deviate from predictions of Gaussian orthogonal ensembles in random matrix theory approaching, especially for small eigenfrequency spacing s, results for Gaussian unitary ensembles. Experimental results are supported by the theoretical analysis of directional graphs.

19.
Phys Rev E Stat Nonlin Soft Matter Phys ; 68(5 Pt 2): 056201, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14682865

RESUMO

We investigate the correspondence between the decay of correlation in classical systems, governed by Ruelle-Pollicott resonances, and the properties of the corresponding quantum systems. For this purpose we construct classical dynamics with controllable resonances together with their quantum counterparts. As an application of such tunable resonances we reveal the role of Ruelle-Pollicott resonances for the localization properties of quantum energy eigenstates.

20.
Phys Rev E Stat Nonlin Soft Matter Phys ; 68(4 Pt 2): 046110, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14683005

RESUMO

An iterated function system (IFS) is defined by specifying a set of functions in a classical phase space, which act randomly on an initial point. In an analogous way, we define a quantum IFS (QIFS), where functions act randomly with prescribed probabilities in the Hilbert space. In a more general setting, a QIFS consists of completely positive maps acting in the space of density operators. This formalism is designed to describe certain problems of nonunitary quantum dynamics. We present exemplary classical IFSs, the invariant measure of which exhibits fractal structure, and study properties of the corresponding QIFSs and their invariant states.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...