Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(18)2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37764616

RESUMO

GaN nanowires grown on metal substrates have attracted increasing interest for a wide range of applications. Herein, we report GaN nanowires grown by plasma-assisted molecular beam epitaxy on thin polycrystalline ZrN buffer layers, sputtered onto Si(111) substrates. The nanowire orientation was studied by X-ray diffraction and scanning electron microscopy, and then described within a model as a function of the Ga beam angle, nanowire tilt angle, and substrate rotation. We show that vertically aligned nanowires grow faster than inclined nanowires, which leads to an interesting effect of geometrical selection of the nanowire orientation in the directional molecular beam epitaxy technique. After a given growth time, this effect depends on the nanowire surface density. At low density, the nanowires continue to grow with random orientations as nucleated. At high density, the effect of preferential growth induced by the unidirectional supply of the material in MBE starts to dominate. Faster growing nanowires with smaller tilt angles shadow more inclined nanowires that grow slower. This helps to obtain more regular ensembles of vertically oriented GaN nanowires despite their random position induced by the metallic grains at nucleation. The obtained dense ensembles of vertically aligned GaN nanowires on ZrN/Si(111) surfaces are highly relevant for device applications. Importantly, our results are not specific for GaN nanowires on ZrN buffers, and should be relevant for any nanowires that are epitaxially linked to the randomly oriented surface grains in the directional molecular beam epitaxy.

2.
Materials (Basel) ; 16(3)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36770233

RESUMO

Polarization doping in a GaN-InN system with a graded composition layer was studied using ab initio simulations. The electric charge volume density in the graded concentration part was determined by spatial potential dependence. The emerging graded polarization charge was determined to show that it could be obtained from a polarization difference and the concentration slope. It was shown that the GaN-InN polarization difference is changed by piezoelectric effects. The polarization difference is in agreement with the earlier obtained data despite the relatively narrow bandgap for the simulated system. The hole generation may be applied in the design of blue and green laser and light-emitting diodes.

3.
Beilstein J Nanotechnol ; 12: 566-577, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34249590

RESUMO

We present detailed Raman studies of graphene deposited on gallium nitride nanowires with different variations in height. Our results indicate that different density and height of nanowires impact graphene properties such as roughness, strain, and carrier concentration as well as density and type of induced defects. Tracing the manifestation of those interactions is important for the application of novel heterostructures. A detailed analysis of Raman spectra of graphene deposited on different nanowire substrates shows that bigger differences in nanowires height increase graphene strain, while a higher number of nanowires in contact with graphene locally reduces the strain. Moreover, the value of graphene carrier concentration is found to be correlated with the density of nanowires in contact with graphene. The lowest concentration of defects is observed for graphene deposited on nanowires with the lowest density. The contact between graphene and densely arranged nanowires leads to a large density of vacancies. On the other hand, grain boundaries are the main type of defects in graphene on rarely distributed nanowires. Our results also show modification of graphene carrier concentration and strain by different types of defects present in graphene. Therefore, the nanowire substrate is promising not only for strain and carrier concentration engineering but also for defect engineering.

4.
Materials (Basel) ; 13(21)2020 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-33114337

RESUMO

We demonstrate that a GaN nanowire array can be used for efficient charge transfer between the organic photovoltaic layer and silicon in a Si/GaN/P3HT:PC71BM inverted hybrid heterostructure. The band alignment of such a material combination is favorable to facilitate exciton dissociation, carrier separation and electron transport into Si. The ordered nature of the GaN array helps to mitigate the intrinsic performance limitations of the organic active layer. The dependence of photovoltaic performance enhancement on the morphology of the nanostructure with nanowire diameters 30, 50, 60, 100 and 150 nm was studied in detail. The short circuit current was enhanced by a factor of 4.25, while an open circuit voltage increase by 0.32 volts was achieved compared to similar planar layers.

5.
Nanotechnology ; 31(18): 184001, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31940593

RESUMO

Examples are presented that application of amorphous Al x O y nucleation layer is an efficient way of controlling spatial distribution of GaN nanowires grown by plasma-assisted molecular beam epitaxy. On GaN/sapphire substrates Al x O y stripes induce formation of GaN nanowires while a compact GaN layer is formed outside the stripes. We show that the ratio of nanowire length h to the thickness of the compact layer d can be tailored by adjusting impinging gallium and nitrogen fluxes. Calculations of the h/d aspect ratio were performed taking into account dependence of nanowire incubation time on the growth parameters. In agreement with calculations we found that the value of h/d ratio can be increased by increasing the N/Ga flux ratio in the way that the N-limited growth regime determines nanowire axial growth rate while growth of compact layer remains Ga-limited. This ensures the highest value of the h/d aspect ratio. Local modification of GaN growth kinetics caused by surface diffusion of Ga adatoms through the boundary separating the Al x O y stripe and the GaN/sapphire substrate is discussed. We show that during the nanowire incubation period gallium is transported out of the Al x O y stripe, which delays nanowire nucleation onset and leads to reduced length of GaN nanowires in the vicinity of the stripe edge. Simultaneously the growth on the GaN/sapphire substrate is locally enhanced, so the planar GaN layers adopts a typical edge shape of mesa structures grown by selective area growth. Ga diffusion length on a-Al x O y surface of ∼500 nm is inferred from our results.

6.
Nanoscale Res Lett ; 11(1): 81, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26860714

RESUMO

The depth distribution of strain and composition in graded Al x Ga1 - x N films and nanowires (NWs) are studied theoretically using the kinematical theory of X-ray diffraction. By calculating [Formula: see text] reciprocal space maps (RSMs), we demonstrate significant differences in the intensity distributions from graded Al x Ga1 - x N films and NWs. We attribute these differences to relaxation of the substrate-induced strain on the NWs free side walls. Finally, we demonstrate that the developed X-ray reciprocal space map model allows for reliable depth profiles of strain and Al composition determination in both Al x Ga1 - x N films and NWs.

7.
Nanoscale Res Lett ; 10: 51, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25852348

RESUMO

In this work, the influence of micro- and macro-deformation profiles in GaN nanowires (NWs) on the angular intensity distribution of X-ray diffraction are studied theoretically. The calculations are performed by using kinematical theory of X-ray diffraction and assuming the deformation decays exponentially from the NW/substrate interface. Theoretical modeling of X-ray scattering from NWs with different deformation profiles are carried out. We show that the shape of the (002) 2θ/ω X-ray diffraction profile (XDP) is defined by initial deformation at the NW's bottom and its relaxation depth given by the decay depth of the exponential deformation profile. Also, we demonstrate that macro-deformation leads to XDP shift, whereas micro-deformations are the cause of XDP's asymmetry and its symmetrical broadening. A good correlation between calculated and experimental XDP from self-assembled GaN NWs on Si(111) substrate was achieved by taking into account all parameters of micro- and macro-deformation profiles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...